
 52 

5.1) Introduction 

Couplers are the most fundamental building blocks in guided-wave optics. They are 

devices that can split optical power in required ratios between multiple waveguides. 

Three coupler configurations can be identified, namely the bi-directional coupler, the 

multi-mode interference coupler (MMI coupler) and the star coupler. Whereas the bi-

directional coupler can only split optical power between two waveguides, the MMI- 

and star couplers can split the power between more than two waveguides. 

5.2) The bi-directional coupler 

Bi-directional couplers can split optical power between two waveguides in any ratio 

required. Although the number of outputs might be restrictive, this coupler is the only 

one (in its basic form) that can split the power in a ratio other than P/N, where P is the 

input power and N is the number of output channels.  

 

Bi-directional couplers are formed by placing two waveguides in close proximity to 

one another. The coupling occurs as a result of the overlap between the evanescent 

field of the one waveguide and the core of the other waveguide, as indicated in figure 

5.1, where the green lines represent the electromagnetic fields. Several theoretical 

analyses of directional couplers have been reported [1,2]. However, it is difficult to 

achieve a device without experimental results [3], because of its sensitivity to 

manufacturing variations. Simulations utilizing BPM can help bridge the gap between 

theory and practice, and supply a very good first-order approximation of how the 

planar circuit will behave, as well as aid in the optimisation of the circuit. 
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Figure 5.1: Geometrical layout of a bi-directional coupler, where P in = P1+P2 

5.2.1) Theoretical aspects 

As was stated, an overlap of evanescent fields with the waveguides is required in 

order to obtain coupling. For the coupling coefficient to be sufficiently large, the tail 

of the evanescent field has to reach a significant region of the waveguide. It is thus 

clear that the spacing between the waveguides has the largest effect on the coupling 

coefficient [4]. It is also important to note that the coupling coefficient depends 

exponentially on this spacing because of the exponential decay of the evanescent 

fields [4]. A general rule of thumb is to set the spacing of the main coupling regions in 

the order of a waveguide width.  

 

The power coupling ratio can be described by [3,4,5] as  
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where L is the length of the straight coupling section, Lend is the increase in coupling 

length in the transition area, and Lc is the total coupling length needed to completely 

couple light from one waveguide to the other, given by  
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The coupling coefficient as stated above can be solved by using the coupled mode 

equations. Furthermore, it can be shown that [5]  

 

 
0RdLend π=  (5.3) 

 

where R is the radius of curvature in the s-bend region, and d0 and L0 are 

phenomenological variables obtained from [5] 
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where d  is the separation of the waveguides in the straight coupling section. 

 

It is possible to obtain the values of Lc and Lend  by simulation. This is done by 

comparing the fraction of crossed power of two couplers with different L but at the 

same wavelength [5]. From here, d0 can be obtained.  This procedure can be repeated 

for various wavelengths in order to obtain a set of Lc ‘s and Lend ‘s for prediction 

purposes. This methodology is described in section 5.2.3.  

 5.2.2) Coupler design 

Two couplers were designed in the BeamPROP environment utilising the waveguide 

parameters as set out in section 4.2. The physical dimensions of the couplers are 

summed up in figure 5.2. It should be noted that the bending radius is well within the 

bounds set in section 4.3 for the minimum-bending radius.  

 

In figures 5.3 and 5.4, the couplers’ simulated responses to changes in the straight 

coupling length (L) are presented. The losses for these devices are negligible, as can 

be seen from the graphs. It can be seen, for example, that for a coupling ratio of 50%, 

a length of ±244.5µm for Coupler 1 and ±256.2µm for Coupler 2 is required at a 

wavelength of 1550nm. The final dimensions for a 3dB coupler as designed in the 

BeamPROP CAD environment are then 1120µm × 12.8µm for Coupler 1 and 

2000µm × 24.3µm for Coupler 2.  
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Figure 5.2: Physical layout of designed couplers  
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Figure 5.3: Simulation results for Coupler 1 
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Figure 5.4: Simulation results for Coupler 2 

5.2.3) Restrictions of the BPM simulations  

As was stated in section 4.3, the simulated bend method allows for the simulation of 

large bending angles in the BeamPROP environment. In the case of the directional 

coupler, however, this method cannot be employed due because the separation effects 

are not incorporated in the simulated bend technique. In other words, after 

transformation, the coupling occurs as it would in the straight coupling length area, 

which will result in an erroneous simulation output.  

 

If a bending radius of 1.5mm were to be used in conjunction with an arc angle of 3°, a 

coupler measuring 560µm × 17.3µm would be obtained, which is about half the 

length of the dimensions stated above. For the purposes of this thesis, where the 

couplers will be used in filter configurations, the coupler with the larger bending 

radius is used to allow for direct simulation.  

 

If the smallest possible size is, however, a pre-defined criterion, the dependence of Lc 

and Lend on the angle and bending radius can be predicted by using the theory defined 
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in section 5.2.1. As was stated, a value for Lc can be obtained by varying the parallel 

length L and recording the output ratio. From standard algebra, the following 

formulae have been derived: 
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It is important to note that equations 5.5 and 5.6 can only be used for one wavelength 

at a time. Bearing this in mind, simulations were performed in BeamPROP for 

Coupler 1. The length L was varied at L1 = 250µm and L2 = 300µm for wavelengths 

between 1.5µm and 1.604µm. In figures 5.5 and 5.6, the simulation results for the 

above procedure are presented. 
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Figure 5.5: Simulated L c as a function of wavelength 
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Figure 5.6: Simulated L end/Lc as a function of wavelength 

 

To obtain a downscaling prediction, the waveguide separation in the transition areas 

defined by Lend is investigated. In figure 5.7, the geometrical layout of a curved 

waveguide used in the coupler is shown. By substituting the design parameters of 

Coupler 1 into the equations given in figure 5.7, the value of b  is found to be 0.95µm. 

So, in order to use the results of figures 5.5 and 5.6, the angle corresponding to values 

of radius R is given by: 

 

 






 −=

R
R95.0arccosθ  

(5.7) 

 

As an example, if R = 20000µm, an angle of θ = 0.56° is obtained. A simulation was 

run in which the validity of these results was verified successfully. In conclusion, 

then, if the minimum bending radius of 1500µm is to be used, the corresponding 

angle will be 2.04°. A coupler with these dimensions will have the same simulation 

results as Coupler 1.  
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Figure 5.7: Dependence of curved waveguides on R and θ  

5.3) Multi-mode interference couplers 

Multi-mode interference (MMI) couplers are based on the self-imaging property of 

multi-mode propagation in a slab. Self -imaging, also known as the Talbot effect, 

requires that the medium of propaga tion have an associated periodicity [4]. In 

multimode waveguides, the input field excites a number of modes. If the propagation 

constants of the modes are integer multiples of a constant 2π/L0, the self -imaging 

occurs at distances that are integer multiple s of L0.  

 

Figure 5.8 depicts the physical layout of an MMI coupler. These couplers can be used 

to split light into more than two paths, and can also split the light in arbitrary ratios, as 

shown by Besse et al [4]. MMI couplers can be used in tuneable Mac h-Zehnder 

couplers (discussed in section 6.6), and have also been demonstrated as building 

blocks in arrayed waveguide gratings (AWGs) [6, 7], albeit in smaller systems 

because the number of output waveguides is limited by geometrical constraints. In 

general they are more robust than bi-directional couplers from a manufacturing 

viewpoint (due to the absence of bending elements), but exhibit higher losses. 
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Figure 5.8: Geometrical layout of MMI coupler 

5.3.1) Theoretical aspects 

The following discussion is taken from [4]. For a one-dimensional description of the 

component, the effective index method may be used. The input field Φ(x,0) is written 

as a sum of the slab modes φ(x), as in equation 5.8: 
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with Cm  representing the amplitude of the mth waveguide mode, defined in terms of 

the overlap integral as  
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The φm(x)’s denote the eigenmodes of the slab waveguide. For accurate reproduction 

of the input field, a large number of modes is desired. The field that propagates along 

the z direction is then described as: 
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with the βm’s representing the propagation constants of the M modes. 

 

For strongly guided waveguides κxm = (m+1)π /We (where κxm  is the transverse wave 

vector defined in chapter 2), with m  the mode number and We the effective width. For 

high contrast waveguides, We ≈ W. The longitudinal propagation constant is 
22

0
22

xmsm kn κβ −= , where ns is the refractive index of the slab region. The paraxial 

approximation yields: 
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Note that β0-β1=3λπ /4We
2n s. The beat length between the fundamental mode and first 

order modes is given by: 
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Now the propagation constants are written as follows: 
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At a distance of 3Lc, the modes have a relative phase that differs by an odd or even 

multiple of π  depending on whether m is odd or even. 

 

Due to the structural symmetry about x=0 (in the middle of the structure), the odd and 

even eigenmodes satisfy the following symmetry conditions: 



 62 

                                       φm(x) = φm (-x)  for even m      

     φm (x) = -φm(-x)  for odd m    (5.15) 

Consequently, an output that is the mirror image of the input at x=0  occurs at a 

distance z = 3Lc. By assuming a large index contrast and slab modes with even and 

odd symmetry, a simple device model can be formulated, as in equation 5.15: 
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Multiple images of the input are formed at intermediate lengths. At a distance of 

3Lc/N from z  = 0, there are N self -images with the qth image located at xq, with phase 

φq given as follows[2]: 

 

 

N
W

Nqx e
q )2( −=  

(5.17) 

 

 

N
qNqq

π
φ )( −=  

(5.18) 

 

for 10 −≤≤ Nq . The total field at z = 3Lc/N is given by 
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where 
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When an MMI is used as a splitter or a combiner in an interferometer, the phase 

relationships between the output ports are needed. These relationships are given in 

terms of the input waveguide [2]: 
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5.3.2) MMI design 

The waveguide structure as defined in chapter 2 can be used for the manufacture of 

MMI couplers. The simulations yielded excellent results, underlining the fact that 

high index contrast waveguides are ideal for MMI couplers. In figure 5.8 the BPM 

simulation for the MMI coupler is shown. The light-blue and green coloured sections 

clearly indicate the position of the image points. A 1 × 2 structure was defined as a 

possible building block for a tuneable coupler utilising a Mach-Zehnder architecture 

as discussed in section 6.6, where an additional 2 × 2 MMI coupler is introduced. 

 
 

Figure 5.9: BPM simulation graphically depicting the MMI imaging process 
 

In order to optimise the design, two-dimensional simulations were conducted first, as 

they have less computational time. The design parameters and results obtained for the 

designed two-dimensional MMI coupler are presented in Table 5.1. These parameters 

were optimised by running a series of simulations varying one parameter at a time. 
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The BPM simulation result is presented in figure 5.9. The values for the excess loss 

and output uniformity are very good in terms of MMIs. Lower losses can be achieved 

by introducing a taper to the MMI section, as presented in [9]. 

 

Input taper 4.5µm 

Output taper 4.5µm 

Input length  200µm 

Output length 400µm 

MMI length 479.2µm 

MMI width 30µm 

Excess loss 0.194dB 

Maximum output non-uniformity 0.12dB 

 

Table 5.1: Design parameters and results for two dimensional MMI coupler 

design 
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Figure 5.10: Simulation of the MMI coupler 
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The ripple observed in figure 5.9 at the output stage is due to mutual coupling 

between the two output waveguides. By using s-bends at the output, this effect can be 

minimised. 

 

For the three -dimensional simulation, all of the above geometrical values were kept 

constant. The results obtained for excess loss was 0.55dB, whereas the maximum 

non-uniformity was 0.4dB. It is clear that the two-dimensional design yields results 

that are in the same order as the three-dimensional case. When it is considered that the 

two-dimensional simulation is markedly faster, it can be concluded that 2-D 

simulations can be used confidently when more integrated systems are investigated. 

5.4) Star couplers 

Star couplers are used as basic cross-connects in passive optical networks [5]. They 

consist of input and output arrays of waveguides separated by a slab diffrac tion region 

as shown in figure 5.11. Star couplers ideally couple the lightwaves from any input to 

all the outputs evenly and without wavelength selectivity.  

 

Through the conservation of power, the minimum loss per port is 10log(N), where N 

is the number of output channels. This minimum loss is also known as the splitting 

loss [4]. The field distribution at the output array is the Fourier transform of the field 

at the input array [10]. A MATLAB program (and results obtained with it) that 

simulates the coupler by means of Fourier optics can be found in the appendix. In 

most cases, the number of output waveguides will exceed the number of inputs so as 

to ensure that the so-called Brillouin region is covered [5]. Furthermore, to make the 

outputs more uniform, the input waveguides are up-tapered near the slab region.  

 

The layout used in figure 5.11 is the Rowland-circle geometry. It is a concave 

geometry with the advantage of allowing for coupling with linear fibre and detector 

arrays. A detailed description of the Rowland-circle is given in section 7.2 with 

specific reference to its use in arrayed waveguide grating (AWG) configurations. The 

chirping of these star couplers is also discussed in section 7.7.1.  
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Figure 5.11: Geometrical layout of waveguide star coupler. The colour bar 

indicates the normalised light intensity 

5.5) Conclusions 

Couplers play a vital role in planar lightwave circuits. The selection of coupler types 

is based on the filter configuration to be used. 

 

So for example, bi-directional couplers and MMI couplers can be used in tuneable 

coupler configurations. In general, the MMI couplers are more robust from a 

fabrication viewpoint, but exhibit higher excess losses. Extremely short MMI couplers 

(20µm – 30µm in length) have been demonstrated [4], which are advantageous when 

very short circuits are required.  
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Lattice MZI filters are built by using bi-directional couplers. The couplers designed 

for this purpose are as small as possible for direct simulation, but where smaller sizes 

are required, a method of prediction was presented in section 5.2.3. Because 

waveguide spacing plays the most significant role in directional couplers, the 

downscaling operation defined in section 5.2.3 is only valid if the spacing of the 

second segment of the s-bend is equal to the spacing of the coupler as simulated 

directly.  

 

Star couplers are capable of splitting light in multiple waveguides without wavelength 

dependence. They allow for very high levels of integration as displayed in AWGs, 

and are sufficiently robust from a manufacturing viewpoint [10]. 
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