
 Abstract - In logistics management, the use of vehicles to 
distribute products from suppliers to customers is a major 
operational activity. Optimizing the routing of vehicles is 
crucial for providing cost-effective services to customers. 
This research addresses the fleet size and mix vehicle routing 
problem (FSMVRP), where the heterogeneous fleet and its 
size are to be determined. A group genetic algorithm (GGA) 
approach, with unique genetic operators, is designed and 
implemented on a number of existing benchmark problems. 
GGA demonstrates competitive performance in terms of cost 
and computation time when compared to other heuristics. 
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I.  INTRODUCTION 
 

 In most supply chains, the management of 
distribution activities is a major operational task because 
distribution costs contribute a significant portion of the 
total operational costs. The need for effective distribution 
systems continues to come up in the supply chain industry 
due to escalating fuel costs. Distribution is a major part of 
logistics and a substantial cost to many companies. An 
effective distribution system can save millions of dollars 
each year. It can assist the decision maker in long-range 
planning, contract negotiations, and operations 
improvement. Hence, the development of effective and 
efficient distribution management systems is imperative. 
 In logistics industry, firms often require their vehicles 
to serve networks of hundreds of customers at various 
locations. As such, planning and scheduling can consume 
much time and effort, yet with little or no realizable cost 
efficiency. Several questions naturally arise: How many 
vehicles are needed to accommodate customer demand? 
What are the required vehicle capacities? What are the 
best routes? How best can customer demands be satisfied 
at the least possible cost? Due to multiple potential 
combinations of vehicle types and routing patterns, 
solutions to these questions are complex. This problem is 
a variant of the vehicle routing problem (VRP) [1]. 
 The rest of the paper is as follows: Section II gives a 
brief outline of the VRP. Section III describes the fleet 
size and mix VRP (FSMVRP). A group genetic algorithm 
is proposed in Section IV. Computational tests and results 
are given in Section V. Section VI concludes the paper. 
 

II.  THE VEHICLE ROUTING PROBLEM 
 

 The VRP, first studied by Dantzig and Ramser [1], 
mainly seeks to minimize transportation costs, number of 
vehicles used, and customer waiting times. Since its 
inception in the 1950s, other VRP variants followed. The 
capacitated VRP (CVRP) is concerned with optimizing 
the dispatch of goods required by customers, using a fleet 
of capacitated homogenous vehicles [2]. Another variant 
is VRP with time window constraints (VRPTW), where 
arrival after the latest time window is penalized [3]. VRP 
problems with heterogeneous vehicles are frequently 
encountered in logistics industry. The heterogeneous fixed 
fleet VRP (HFFVRP) is a CVRP variant with a fixed 
number of available vehicles. The decision involves how 
best to utilize the existing vehicle fleet [4]. On the other 
hand, the FSMVRP is a CVRP variant where the fleet size 
and its composition are to be determined [5]. 
 

III.  THE FSMVRP PROBLEM DISCRIPTION 
 
 Formally, the FSMVRP can be described as follows. 
There are n customer locations, {1, 2,..., n}. A fleet of T 
vehicle types are available at the depot, represented by 0. 
The number of vehicles for each type is unlimited, and 
one of the decisions is to determine the number of 
vehicles of each type. Each vehicle type t has a capacity 
Qt, a fixed cost ft and a variable cost per unit distance vt. 
Assume that between two vehicle types a and b, we have 
fa  fb if Qa  Qb. Two cost structures exist: (i) different 
fixed costs with uniform variable costs [4-9], and (ii) 
different variable costs with no fixed costs [10-12]. For 
the FSMVRP with fixed costs and uniform variable costs;  
 

tfv tt  0;1       (1) 

 
For the FSMVRP with variable costs and no fixed costs; 
 

tfv tt  0;0       (2) 

 
 Each customer node i  0 has a non-negative demand 
di. Let the travelling distance between location i and j be 
non-negative τi,j. These distances are symmetric and 
satisfy the inequality, τi,j = τj,i and τi,j  τj,k ≥τi,k. Thus, the 
total variable cost of travelling from location i to location 
j is vtτi,j. The FSMVRP consists in determining the vehicle 
fleet composition and the route of each vehicle, so that the 
total cost of delivering goods to all customers is 
minimized; each route starts and ends at the depot; each 
customer is visited exactly once; customer demands are 
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satisfied; and vehicle capacity is not violated. Owing to 
FSMVRP complexity, the use of exact methods on large-
scale instances is not viable. Not surprisingly, most 
approaches rely on heuristics that obtain good solutions, 
including tabu search [6] [7], memetic algorithm [11], 
genetic algorithm [11], particle swarm optimization [14], 
and evolutionary algorithm [12]. We propose a group 
genetic algorithm (GGA) to address the FSMVRP. 
 

IV.  GROUP GENETIC ALGORITHM APPROACH 
 
 We describe GGA and its elements, including 
chromosome coding, initialization, and genetic operators. 
 
A. GGA Coding Scheme 
 
 The GGA performance strongly depends on the type 
of the coding scheme used. While most authors use 
depot(s) as trip delimiters [11] [12], a few do not use 
delimiters [15]. We develop our coding scheme from the 
later. The evaluation of a chromosome k = [1, 2, 3,…, n] 
involves partitioning customer orders along k into groups 
so that the cumulative load for each group does not 
exceed the vehicle capacity, and the cumulative delivery 
cost incurred is minimized. This is represented by a graph, 
G(X) with vertex V(G) = {i | 0 ≤ i ≤ n}. Let E(G) be the set 
of directed arcs on G(X), where (i,j)  E(G) iff 

,
1 t

j

im m Qd  
and t be the vehicle type chosen. Each 

arc (i,j) represents a feasible trip, where the vehicle 
departs from node 0 (depot) and visits nodes i+1, i+2,…, 
j-1, and j, consecutively. The total load for trip (i,j) is 

given by .
1 

j

im md The objective is to select a vehicle 

type t with the least cost and capacity not less than the trip 
load. Then, for the FSMVRP with fixed cost, trip cost ci,j 
is equivalent to fixed cost plus variable costs [5]; 
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On the other hand, for the FSMVRP with no fixed cost; 
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j
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Fig. 1.  Typical data for chromosome representation 

 
 Consider a typical distribution center with T = 2 
unlimited vehicle types to serve n = 6 retailers (see Fig. 1). 
The numbers on arc(i,j) and node j represent τi,j and di, 
respectively. The capacities of vehicle types t1 and t2 are 
Q1 = 500 and Q2 = 550, respectively. Their fixed costs are 

f1 = 300 and f2 = 400, respectively. The proposed GGA 
uses a group structure for each feasible solution based on 
three codes (see Fig. 2). Code 1, of size n, is a group 
structure upon which the genetic operators act. Code 2 
shows the vehicle type assigned to each trip, while code 3 
represents the position of the last node of each trip. 
 

 
Fig.2.  Chromosome representation 

 
 The chromosome [1 2 4 3 5 6 · 1 1 2], comprises 
codes 1 and 2 (“·” demarcates codes 1 and 2). According 
to code 1, vehicle type 1, with f1 = 300 and vt = 1, is 
assigned trip (0-1-2-0). From (3) the total cost for this trip 
is 300 + 240 + 42 + 280 = 862. Other trips, (0-4-0) and 
(0-3-5-6-0), are evaluated in a similar manner, as shown 
in Table I. 
 

TABLE I. 
GGA CODING SOLUTION EXAMPLE 

 
Trip Vehicle type Cost  
0-1-2-0 1 862 
0-4-0 1 700 
0-3-5-6-0 2 930 
Total Cost 2492 

 
B.  Initialization 
 
 An initial population of the desired size, popsize, is 
produced by (i) savings [16] and sweep heuristics [17], 
and (ii) random generation. The savings algorithm is 
applied using one vehicle type at a time. The sweep 
algorithm is also used to generate initial solutions. These 
initial solutions are then concatenated into chromosomes. 
More chromosomes are generated as follows; 
 
Repeat 
1. Assign a location to each vehicle t, (t = 1,2,…, m) 
2. Randomly assign the remaining locations, 
3. Encode the string and add to initial population, 
Until (population size = popsize). 
 
 The GGA approach minimizes some cost function f 
which is mapped to a score function, as suggested in [23]; 
 

)](,0max[)( max  kk gff      (5) 

 
where, gk(τ) is the objective function of chromosome k at 
time τ and fmax is the largest objective function. 
 
C.  Selection Operator 
 
 Several selection strategies have been suggested by 
Goldberg [18], including deterministic sampling, 
remainder stochastic sampling with/without replacement, 
and stochastic tournament. The remainder stochastic 
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sampling without replacement is applied in this work; 
each chromosome k is selected and stored in the mating 
pool according to its expected count ek calculated thus; 

  

 popsie

k k

k
k

fpopsize

f
e

1
1

     (6) 

 
 Here, fk is the score function of the kth chromosome. 
Each chromosome receives copies equal to the integer 
part of ek, that is, [ek], while the fractional part frac(ek) is 
treated as a success probability of obtaining additional 
copies of chromosome k into the mating pool. 
 
D.  Crossover Operator 
 
 Crossover is an evolutionary mechanism by which 
selected chromosomes mate to produce new offspring, 
called selection pool. This enhances exploration of 
unvisited regions in the solution space. The proposed 
group crossover operator exchanges groups of genes of 
selected chromosomes (see Fig.3), with probability 
prcoss, until the desired pool size, poolsize, is obtained: 
 
Repeat 
1. Generate the crossover point in (1, g-1), g = trips. 
2. Swap the groups to the right of the crossover point. 
3. Repair the offspring, if necessary. 
Until (selection poolsize is achieved). 
 

 
Fig. 3: Crossover operator 

 
 After crossover, some customers may appear in more 
than one trip, while others may be missing. Such offspring 
should be repaired by eliminating duplicated customers to 
the left of the crossover point (see Fig.4) and inserting 
missing ones into the trip with the least loading. Thus, 
group coding takes advantage of the group structure. The 
basic single-point crossover is applied on code 2. 
 

 
Fig. 4: Chromosome repair mechanism 

 
E.  Mutation Operator 
 
 Mutation is applied to every new chromosome using 
two mutation operators; swap mutation and shift mutation. 
The swap mutation operates by exchanging genes 
between two groups in a chromosome according to the 
following procedure: 
 

1. Randomly select two numbers from set {1, 2,…,g}; 
2. Randomly choose a gene from each group; 

3. Swap the selected genes. 
 
Fig. 5 illustrates the swap mutation mechanism. 

Fig. 5. Swap mutation 
 
 The shift mutation works by shifting the frontier 
between two adjacent groups by one step, either to the 
right or to the left (see Fig. 6) as follows; 
 
1. Randomly generate the frontier in (1, g-1). 
2. Randomly choose the shift direction: right or left. 
3. Shift the frontier in the selected direction. 
 

 
Figure 6: Shift mutation operator 

 
 As for the genes that correspond to code 2, a basic 
mutation operator is applied by replacing a randomly 
selected gene with a randomly generated integer in {0, 
1,…,T}. Mutation essentially provides GGA with a local 
search capability, called intensification. However, shift 
mutation is a more localized search than swap mutation. 
 
F.  Inversion Operator 
 
 To curb premature convergence, inversion is applied 
at a low probability on selected chromosomes. Inversion 
rearranges chromosome groups in a reverse order (Fig. 7). 

 
Before inversion  : [ 1 2 | 4 | 3 5 6 ] 
After inversion   : [ 3 5 6 | 4 | 1 2 ] 

 
Fig. 7: Inversion operator 

 
G.  Diversification 
 
 As iterations proceed, the population converges to a 
particular solution. Premature convergence may occur 
before an optimal solution is obtained. To check diversity, 
define an entropic measure Hi for each location i; 
 







m

j

ijij

i m

opsizepnpopsizen
H

1 )log(

)(log)(
   (7) 

 
where nij is the number of chromosomes in which location 
i is assigned position j in the current population; m is the 
number of locations. Then, diversity H is defined as, 
 





m

i
i mHH

1

        (8) 

 

Offspring chromosome : [ 1 2 | 4 | 3 5 6 ] 
Select group or trip : 2 and 3 
Select genes or nodes : 4 and 6 

Mutated offspring   : [ 1 2 | 6 | 3 5 4 

offspring chromosome   : [ 1 2 | 4 | 3 5 6 ] 
select frontier, rand (1,2)  : 1 
select direction     : left 

mutated offspring     : [ 1 | 2 4 | 3 5 

shift frontier 

Before repair:  [ 1 2 | 4 | 4 6 ] 

[ 1 2 | - | 4 6 ] 

After repair:   [ 1 2 | 3 5 | 4

eliminate 4 

introduce 3,5 

[ 1 2 | 4 | 3 5 6 ]   [ 1 2 | 4 | 4 6
]

swap 

[ 1 3 | 2 5 | 4 6 ]    [ 1 3 | 2 5 | 3 5
6 ]

Parents:        Offsprings:
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 Therefore, inversion is applied to improve diversity to 
a desired value. The best candidates from diversified and 

undiversified populations are always preserved.  
G.  The GGA Implementation 
 
 The overall GGA (Fig. 8) incorporates the operators 
described in previous sections, using carefully chosen 
genetic probabilities: crossover (0.4), mutation (0.01), and 
inversion (0.05) as in [21]. 
 
GGA Algorithm: 
BEGIN 
1: Input: initial data input: select GGA parameters; 
2:  Initial population, oldpop: create chromosomes; 

(i) savings and sweep algorithms; then, (ii) random generation; 
Repeat 
3: Selection/recombination: 

(i) evaluate strings by fitness function; 
(ii) create temporal population, temppop: use int [ek], then frac(ek)  

4: Group crossover/recombination: 
(i) select 2 strings by selection strategy from temppop. 
(ii) apply crossover operator to the 2 strings. 
(iii) if successful, apply inversion, else go to 5. 
(iv) apply repair mechanism if necessary. 

5: Mutation: mutate and  move offspring to new population, newpop; 
6: Replacement strategy: 

(i) compare selection pool spool and oldpop strings, successively; 
(ii) take the one that fares better in each comparison; 
(iii) select the rest of the strings with probability 0.55; 

7: Diversification: 
(i) calculate population diversity H; 
(ii) if (H  Hmin) then diversify till H ≥ Hmin; 
(iii) re-evaluate strings by fitness function; 

8: New population:  
(i) oldpop = newpop 
(ii) advance population, gen = gen + 1 

Until (gen ≥ maxgen) 
END 

Fig. 8: Proposed GGA Implementation 

V.  COMPUTATIONAL TESTS AND DISCUSSIONS 
 

A.  Problem Sets 
 
 The proposed GGA was implemented in Java and 
executed on a Pentium 4 at 3GHz based on 12 benchmark 
problems in [20]. Table II specifies the costs, vehicle 
capacity Qt, (t = 1, 2,…, 6); fixed cost ft; and variable cost 
vt. Using the notation in [5], problem sets 3 to 6 have 20 
customers, 13 to 16 have 50, 17 to 18 have 75, and 19 to 
20 have 100. Computational results were compared with 
those from best-performing heuristics in the literature, 
including tabu search [21] [7] [9], column generation-
based heuristics [8], and evolutionary algorithm [12]. 
 
B.  Computations, Results and Discussions 
 
 Table III presents the computational results of the 
FSMVRP with fixed costs. A count of the best-known 
solutions obtained by the heuristics is provided. Out of the 
12 benchmark problems, our GGA approach produced 11 
best known solutions, compared to only 6 found in [21], 6 
in [7], 5 in [15], 8 in [8], 9 in [9], and 10 in [5]. 
 Table IV presents the percentage deviation of each 
solution from the best-known and the computation times 
for each problem. All algorithms showed remarkable 
accuracy, with average percent deviation less than 1%. 
Our GGA performed competitively in terms of percentage 
deviation and computation times. The results demonstrate 
the utility of the GGA developed in this research. 
VI.  CONCLUSIONS AND FURTHER RESEARCH  

  TABLE II 
SPECIFICATIONS FOR THE BENCHMARK PROBLEMS 

 
No. Q1 f1 v1 Q2 f2 v2 Q3 f3 v3 Q4 f4 v4 Q5 f5 v5 Q6 f6 v6

3 20 20 1.0 30 35 1.0 40 50 1.0 70 120 1.0 120 225 1.0    
4 60 1000 1.0 80 1500 1.0 150 3000 1.0          
5 20 20 1.0 30 35 1.0 40 50 1.0 70 120 1.0 120 225 1.0    
6 60 1000 1.0 80 1500 1.0 150 3000 1.0          
13 20 20 1.0 30 35 1.1 40 50 1.2 70 120 1.7 120 225 2.5 200 400 3.2 
14 120 100 1.0 160 1500 1.1 300 3500 1.4          
15 50 100 1.0 100 250 1.6 160 450 2.0          
16 40 100 1.0 80 200 1.6 140 400 2.1          
17 50 25 1.0 120 80 1.2 200 150 1.5 350 320 1.8       
18 20 10 1.0 50 35 1.3 100 100 1.9 150 180 2.4 250 400 2.9 400 800 3.2 
19 100 500 1.0 200 1200 1.4 300 2100 1.7          
20 60 100 1.0 140 300 1.7 200 500 2.0          

TABLE III 
COMPUTATIONAL RESULTS FOR THE BENCHMARK PROBLEMS 

 
No. Best 

known 
Gendreau et 
al. (1999) 

Wassan and 
Osman (2002)

Lima et al. 
(2004) 

Choi and Tcha 
(2007) 

Brandao 
(2008) 

Liu et al. 
(2009) 

GGA (2012) 

3 961.03 961.03 961.03 961.03 961.03 961.03 961.03 961.03 
4 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 6437.33 
5 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05 1007.05 
6 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47 6516.47 
13 2406.36 2408.41 2422.10 2408.60 2406.36 2406.36 2406.36 2406.36 
14 9119.03 9119.03 9119.86 9119.03 9119.03 9119.03 9119.03 9119.03 
15 2586.37 2586.37 2586.37 2586.88 2586.37 2586.37 2586.37 2586.37 
16 2720.43 2741.5 2730.08 2721.76 2720.43 2728.14 2724.22 2720.43 
17 1734.53 1749.5 1755.1 1758.53 1758.53 1734.53 1734.53 1734.53 
18 2369.65 2381.43 2385.52 2396.47 2371.49 2369.65 2369.65 2369.65 
19 8659.74 8675.16 8659.74 8691 8664.29 8661.81 8662.95 8661.81 
20 4038.46 4086.76 4061.64 4093.29 4039.49 4042.59 4038.46 4038.46 

Bests: 12 6 6 5 8 9 10 11 
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 FSMVRP involves the determination the fleet size 
and the mix of heterogeneous vehicles, assuming that the 
number of vehicles of each type is unlimited. This paper 
presents a GGA for solving the FSMVRP with fixed and 
variable costs. The approach obtained best-known 
solutions based on the comparative analysis tests on 
benchmark problems. Moreover, the GGA approach 
performed competitively within a reasonable computation 
time. In terms of the average solution cost, GGA 
demonstrated competitive performance. 
 This research contributes logistics and transportation. 
The current GGA uses unique group genetic operators, 
demonstrating its competitive performance when 
compared to related approaches in the literature. Possible 
further research directions include the design of more 
efficient algorithms for solving the FSMVRP problem in 
which the customer demand is uncertain or fuzzy. 
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TABLE IV 

PPERCENT DEVIATIONS AND CPU TIMES FOR FSMVRP ALGORITHMS 
 

No. Best 
known 

Gendreau et al. (1999)  Lima et al. (2004) Choi and Tcha (2007) Liu et al. (2009)  GGA (2012) 
Deviation Time (s)  Deviation Time (s) Deviation Time (s) Deviation Time (s)  Deviation Time (s)

3 961.03 0.000 164  0.000 89 0.000 0 0.000 0  0.000 0 
4 6437.33 0.000 253  0.000 85 0.000 1 0.000 0  0.000 1 
5 1007.05 0.000 164  0.000 85 0.000 1 0.000 2  0.000 2 
6 6516.47 0.000 309  0.000 85 0.000 0 0.000 0  0.000 0 
13 2406.36 0.085 724  0.093 559 0.000 10 0.000 91  0.000 89 
14 9119.03 0.000 1033  0.000 669 0.000 51 0.000 42  0.000 65 
15 2586.37 0.000 901  0.020 554 0.000 10 0.000 48  0.000 55 
16 2720.43 0.775 815  0.049 507 0.000 11 0.139 107  0.000 10 
17 1734.53 0.863 1022  1.384 1517 1.384 207 0.000 109  0.000 113 
18 2369.65 0.497 691  1.132 1613 0.078 70 0.000 197  0.000 211 
19 8659.74 0.178 1687  0.361 2900 0.053 1179 0.037 778  0.024 804 
20 4038.46 1.196 1421  1.358 2383 0.026 264 0.000 1004  0.000 1047 

  Averages: 0.3012% 776.9  0.3171% 887.4 0.1462% 172.4 0.0176% 209.0  0.0024% 209.7 
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