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Abstract—A narrow-band interference (NBI) model for the
powerline communications channel is presented. We give fre-
quency domain details and analysis of the NBI model specifically
for OFDM systems; it can easily be adapted to model NBI for
other communications systems. We also show that by making the
same assumptions as in the Middleton class A model, our NBI
model becomes the Middleton Class A noise model.

Index Terms—Narrow-band interference, noise model, Power-
line communications, OFDM

I. INTRODUCTION

It is widely accepted that the power line communications
channel is characterised by three main noise types namely,
coloured background, impulse and narrow-band interference
(NBI). Of these three noise types, the narrow-band interference
has not been given much attention and as a result it lacks a
well defined model. We find some good efforts in describing
or modelling narrow-band interference in [1]–[5]. Galda and
Rohling [1] gave a brief NBI model description, where the
bandwidth of the interfering signal was considered to be
small compared to the OFDM subcarrier spacing, hence the
interfering signal could be modelled as a single-tone. The
frequency and phase of the single-tone interfering signal were
assumed to be stochastic with a uniform distribution. The
power of the interfering signal was a fixed parameter. In
[2], the interfering signal was considered to be a stochastic
process in the time domain. The authors in [3] and [4] gave
descriptions of interference models together with expressions
for the interfering signal. With the aid of the expressions, they
explained the conditions under which an interfering signal
affects only one subcarrier or several adjacent subcarriers.
The work [1]–[4] mostly described the signal processing of
the NBI which was sufficient for the purposes of that work.
Unfortunately, not much statistical detail of the models was
given. The contribution of this article is therefore to give
a detailed and well-defined narrow-band interference model
applicable to an OFDM system, which is an extension of our
previous NBI model in [5]. We will focus to the OFDM system
when used in the powerline communications (PLC) channel.

Any communications system, with a given finite bandwidth,
is susceptible to frequency interference. The frequency inter-
ference can originate from several sources and appear on the
frequency spectrum of the system as interfering signals. We
will call an interfering signal, an interferer. In the powerline
communications, the sources of frequency interference can
be classified into two main classes: 1. interference due to
electrical devices connected in the same PLC network as the
transmitter of the desired signal, and 2. interference due to
radio broadcasters. The devices connected to the PLC net-
work cause interference at their switching frequency and they
usually affect PLC transmission taking place in frequencies up
hundreds of kilohertz. Radio broadcasters commonly operate
in the megahertz region of the frequency spectrum and will
interfere with PLC transmission occurring in the megahertz
region. In this work, we shall focus on interferers with narrow
bandwidth and occurring from independent sources. This view
is somewhat generic to the two classes of sources of frequency
interference in PLC already mentioned.

Now, we assume that interferers originate from different
independent sources, and we also assume that a very large
number of interferers rarely occurs within a given frequency
band. We therefore model the probability of a certain num-
ber k of interferers on the system’s spectrum as a Poisson
distribution

Pk =
ηke−η

k!
, (1)

where k = 0, 1, . . .∞.
In general, η in (1) is a quantity indicating the average

number of occurrences of certain events, defined over a
specified observation period. In our model, we define the
average fraction of bandwidth occupied by NBI in a system
bandwidth W as

λ =
ηΩ̄

W
,

where η the average number of interferers with average
bandwidth Ω̄. Pk then is the probability that there are k such
interferers on the frequency band W . The next task is then to
find the power of the interferer(s) that affects the system as



NBI, and to also approximate the probability distribution of
the power of this interference (noise) in the system.

We specify our system of interest in this paper as the OFDM
(Orthogonal Frequency Division Multiplexing) system, and we
shall present our NBI model for this system.

Our NBI model defines the interferers in the frequency
domain, with the assumption that they correspond to real
signals in the time domain. The effect of the interferers on the
system is also completely described in the frequency domain.

OFDM Signal Generation Overview:

OFDM is a multicarrier transmission scheme, where data
is carried on several subcarriers which are orthogonal to each
other to avoid mutual interference. In the OFDM system of
interest, an IDFT (inverse discrete Fourier transform) takes
in as input, data symbols carried in vector Ds, from a phase-
shift-keying (PSK) modulation scheme and produces a discrete
sequence in the time domain, dn. The relationship between Ds

and dn is represented by

dn =
1√
N

N−1∑
s=0

Dse
j2πns/N , (2)

where N is the number of subcarriers used to carry data.
dn is the complex baseband transmit signal from the output
of the IDFT normalized by the factor 1√

N
.

II. NBI POWER

Let us define an arbitrary interferer x(n), of bandwidth Ω,
as a discrete-time signal which is a sum of arbitrary single-
tone signals as

x(n) =

Ω∑
i=0

Aie
j(2πfin+φi), (3)

where Ai, fi and φi are the corresponding amplitudes,
frequencies and phases of the different arbitrary signals, re-
spectively. At the receiver the interferer goes through the N-
point DFT and appears on the OFDM spectrum. The result of
this operation is described by

X(ω) =

N−1∑
n=0

x(n)e−jωn, (4)

where X(ω) is the amplitude spectrum of x(n) after the DFT.
We represent the continuous amplitude spectrum of X(ω), in
frequency f , as X(f).

If the interferer is a single-tone then it can be described by
the ith signal as

xi(n) = Aie
j(2πfin+φi) (5)

and its amplitude spectrum, after applying a rectangular win-
dow and DFT, is given by

Xi(f) = Aie
jφiej(N−1)(πfi−πf) sinN(πfi − πf)

sin (πfi − πf)
1. (6)

1The derivation of the equation can be found in the Appendix

From here onwards, we will refer to the power or amplitude
spectrum of a time domain signal (or interferer) after window-
ing and DFT, simply as power or amplitude spectrum of the
signal (interferer).

Now, returning to the amplitude spectrum in (4) which has
a bandwidth Ω. We are interested in the effect of the power
spectral density (PSD) of the interferer x(n) on the OFDM
spectrum and hence, how the interferer affects the OFDM
signal as noise in the frequency domain.

In Fig. 1 we show an arbitrary power spectrum of the
interferer x(n) denoted by |X(f)|2; together with that of two
consecutive subcarriers SCm and SCm+ 1, centred at fm and
fm+1, respectively.

f

PSD

. . . . . .

SCm

SCm+1

|X(f)|2 |X(fm)|2

fm fm+1

Fig. 1. The effect of the power spectrum |X(f)|2 of an arbitrary interferer
x(n), on the OFDM spectrum showing two neighbouring subcarriers SCm

and SCm+1. The Centre frequencies of SCm and SCm+ 1 are fm and
fm+1, respectively. |X(fm)|2 is the power contribution of the spectrum
|X(f)|2, of the interferer, on SCm.

In Fig. 1 we also show some power contribution of the
interferer on subcarrier SCm as |X(fm)|2. This power contri-
bution on a subcarrier(s) is the interferer’s power that affects
the subcarrier as noise or effective noise power. The power
contribution |X(fm)|2 of the interferer on a subcarrier(s)
can vary depending on the position of the interferer’s PSD
on the OFDM spectrum. We will shortly explain this power
contribution in relation to the position of a given interferer on
a subcarrier.

Focusing on one subcarrier SCm, we are interested in
finding the power contribution of the interferer x(n) on the
subcarrier, in the frequency domain. The DFT (of the OFDM
receiver) samples the received signal at the centre frequency
of each subcarrier to get the transmitted data. Therefore, the
interferer contributes its power to the subcarrier centred at fm
when its power spectrum is evaluated at fm. This evaluation
of the interferer’s PSD at fm results in the power contributed
being |X(fm)|2, as already stated.

It is sufficient to show the power contribution of the
interferer(s) on one subcarrier, because the analysis of the
power contribution on every other subcarrier follows the same
manner. As such, the analysis of the power contribution on



one subcarrier can be applied to all subcarrier.
It should be noted that when the bandwidth of the interferer,

Ω is larger than the subcarrier spacing, the interferer may con-
tribute power to several adjacent subcarriers. The contribution
of the interferer’s power to one subcarrier can be analysed
without affecting the contribution to another subcarrier. This
is in agreement with our argument that analysing the inter-
ferer’s power contribution on one subcarrier is enough to give
us an understanding of the frequency interference on every
subcarrier.

Now, let us have an interferer of fixed average amplitude
A and bandwidth Ω (0 < Ω < W ). This interferer can be
located anywhere along the OFDM frequency spectrum W , its
position is therefore unknown (variable y). We are interested
in finding the noise power contribution of this interferer on a
particular subcarrier with a centre frequency fm. The power
contributions of the interferer at fm are the instantaneous
points on the interferer’s PSD when evaluated at fm. Let the
position of the interferer, around the subcarrier, have a uniform
probability distribution. Since the interferer has bandwidth Ω,
then the probability distribution of its power contributions on
the subcarrier at fm, is P = 2Ω/W . The factor of 2 is due
to the fact that the interferer’s PSD can be on either side of
fm, in position, and still contribute power at fm. So, each
power contribution of the interferer on a subcarrier has equal
probability P , where each power contribution corresponds
to the instantaneous location/position of the interferer. This
enables us to calculate the average power contribution of the
interferer in question on a subcarrier, which will be the sum
of all the possible power contributions weighted by the their
probabilities P . We denote this average power contribution of
a single interferer on subcarrier centred at fm by χ̄, and is
defined as

χ̄ =

∫ Ω

0

P |Xy(fm)|2dy

=
2Ω

W

∫ Ω

0

|Xy(fm)|2dy, (7)

where y are the different frequency values (positions on the
spectrum) the interferer can assume, which is a variable over
the bandwidth of the interferer. The term

∫ Ω

0
|Xy(fm)|2dy in

(7) gives the total power of the interferer, and χ̄ gives the
average effective power, which is the power contributed by
the interferer on the subcarrier.

To make the analysis simpler for any given number of
interferers k, we assume they have an average bandwidth
Ω = Ω̄ and the same A, and hence the same average effective
power χ̄ as calculated in (7). Therefore the power contribution,
due to the k interferers, is the sum of the average effective
power of the individual interferers,

σ2
k = kχ̄. (8)

We call σ2
k the effective narrow-band interference (NBI)

power, given k interferers. The total average effective NBI
power in the system is

σ2 =

∞∑
k=1

σ2
kPk

= χ̄

∞∑
k=1

kPk

= χ̄η, (9)

where Pk is as defined in (1) and χ̄ as defined in (7).
Note: If the positions of the interferers are mostly static on

the frequency band of interest, as might be the case with the
PLC channel, the model will still apply, but with the following
changes on the average effective power χ̄ in (7). The position
of an interferer will no longer have a probability distribution
because it is fixed, and its power that affects a subcarrier
centred at fm will be one of the |Xy(fm)|2, for y = 0 . . .Ω.
We can define the average effective power, χ̄, as the average
of all the values |Xy(fm)|2, for y = 0 . . .Ω.

χ̄ = E
{
|Xy(fm)|2

}
, (10)

where E {.} means the expectation. It should be noted that
whether the positions of the interferers are static or changing,
that has no bearing on the probability of having interferers in
the system, Pk.

A second issue to be noted is that when the average
bandwidth of the interferers Ω̄ gets larger, there is likely going
to be more adjacent subcarriers affected by an interferer as
NBI. Remembering from Section I that λ ∝ Ω̄, then as Ω̄ gets
larger so does λ. This means that the probability of having
NBI in the system increases in proportion to an increased
Ω̄. As stated, interferers with larger bandwidth may affect
adjacent subcarriers and this will likely result in a burst of
errors. Whether adjacent or random subcarriers are affected,
the average number of errors that will occur in the system
does not change. This burst error phenomenon can easily be
taken into account by using models that consider channels with
memory for example, a Gilbert-Elliot model.

Similarities to Middleton’s Class A Noise Model:

Just as in the Class A noise model by Middleton [6], the
NBI model, in the frequency domain, can be seen as an infinite
number of parallel channels each with effective NBI power σ2

k

(k = 0 . . .∞) and additive white Gaussian noise of variance
σ2
g , where each channel is selected with probability Pk prior

to transmission. This channel model is shown in Fig. 2, where
a symbol D is affected by AWGN of variance σ2

g and NBI of
variance σ2

k.
Now, let us make the assumption that the NBI amplitude

due to k interferers is a Gaussian random variable, and
can take any value z, with mean µ and variance σ2

k. Then
this interference (noise) due to k interferers has a Gaussian
distribution with a PDF (probability density function) defined
as P(z|k) = N (z;µ, σ2

k).

P(z|k) =
1√

2πσ2
k

exp
−(z − µ)2

2σ2
k

. (11)
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Fig. 2. Narrow-band interference model including additive white Gaussian
noise (AWGN). A symbolD affected by AWGN of variance σ2

g . Then it enters
one of infinite parallel channels with probability Pk , and in that channel the
symbol is affected by NBI of power σ2

k such that the output data symbol D̄
is the original D plus noise of variance σ2

g + σ2
k .

Then the probability distribution of the NBI z is

P(z) =

∞∑
k=1

P(z|k)Pk. (12)

With the results of Equation (11) and Equation (12), we
have arrived at the same result of Middleton Class A noise
model [6], where it was assumed that the noise has a Gaussian
distribution.

III. HOW THE NBI MODEL IS APPLIED

To demonstrate the application of our NBI model, we shall
use an example. Firstly, we modify the infinite-parallel-channel
model in Fig. 2 into an easy to use two-parallel-channel model
as shown in Fig. 3.

D D̄

σ2g

σ2g + χ̄

λ

1− λ

Fig. 3. Narrow-band interference model including additive white Gaussian
noise (AWGN). A symbol D either enters a channel with AWGN (variance
σ2
g ), with probability 1 − λ, or enters a channel with noise σ2

g + χ̄, with
probability λ.

A transmitted symbol from any modulation is affected by
AWGN of variance σ2

g , with probability 1−λ. The symbol is
affected by AWGN and NBI of average power σ2

g + χ̄, with
probability λ. That is, a symbol “chooses” one of the channels
in Fig. 3 according to the entrance probabilities λ or 1− λ.

Now, let λ = 10−2 and χ̄ = 10. For AWGN, σ2
g = 1.

Having specified the variances of the AWGN and the NBI,
we now want to specify the noise samples of the AWGN and

that of the NBI, which we call ng and nN , respectively. We
focus on nN because ng is known, it is AWGN.

Let us look at two distributions for the NBI sample nN ,
which are the uniform distribution and Gaussian distribution.

Case A: NBI has a uniform distribution.
For a uniform distribution with limits a and b:
• nN = a+ (b− a)Ru.
• Ru, a function that generates a random number from a

standard uniform distribution on the open interval (0, 1).
• the variance χ̄ and given by (b− a)2/12.
• since we know the variance we need to specify a and b,

let a = −b, then we have b =
√
χ̄
√

3 =
√

10
√

3.
• nN = −

√
10
√

3 + 2
√

10
√

3Ru.

Case B: NBI has a Gaussian distribution with mean µ = 0.
• nN =

√
µ+
√
χ̄Rg .

• Rg , a function that generates a random number from a
standard normal distribution.

• nN =
√

10Rg .

The symbol is affected by noise as follows:
• with probability λ: D̄ = ng + nN +D
• with probability 1− λ: D̄ = ng +D,

where ng = Rg because σ2
g = 1.

If D is complex valued, then nN and ng have to be complex
too. For example, in [5] we generated each NBI sample nN
as a complex random value using the function Rg , such that
the sample was

√
χ̄Rg + j

√
χ̄Rg . As such, the NBI generated

in [5] can be viewed as a random phasor that can rotate in
any direction, with the real and imaginary components each
having a magnitude determined by Rg and

√
χ̄.

Fig. 4. BPSK–256OFDM modulation bit error rate performance in the
presence of NBI with χ̄ = 10 and λ = 10−2, and AWGN with σ2

g = 1.

In Figs. 4 and 5 we give the simulation results of Case B,
where the system is OFDM with N = 256 subcarriers, and
BPSK is used as the modulation. In Figs. 4, we set λ = 10−2

and χ̄ = 10. The probability of error caused by NBI for a
BPSK modulation will be 0.5 × λ = 0.5 × 10−2. The error



floor in Fig. 4 confirms this estimate of the probability of
error. The Signal to Noise Ratio (SNR) is Eb/2σ2

g in Fig. 4,
hence the persistent error floor. The role of Fig. 4 is to indicate
the probability of error caused by NBI without paying special
attention to the power of the NBI. We address the issue of the
effect of the NBI power in the SNR in Fig. 5.

Fig. 5 shows the simulation result with similar parameters to
that of Fig. 4, except that now the SNR includes the NBI power
and is Eb/2(σ2

g + χ̄). Also in Fig. 5, we have set λ = 10−2

and χ̄ = 100. The SNR gap between the graph of AWGN only
and that of AWGN + NBI confirms the NBI power, χ̄ = 100.

Fig. 5. BPSK–256OFDM modulation bit error rate performance in the
presence of NBI with χ̄ = 100 and λ = 10−2, and AWGN with σ2

g = 1.

IV. CONCLUSION

We have given a narrow-band interference model which is
applicable to the PLC channel when an OFDM system is
used. In the model we gave the probability with which this
NBI power affects data. We also showed how to calculate
the average effective power of the narrow-band interference,
from a number of interferers, that affects the OFDM system.
The average effective NBI power can be modelled with an
appropriate distribution; in this paper we demonstrated the use
of two distributions which were the uniform and Gaussian
distribution, and gave numerical results for the Gaussian
distribution case.
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APPENDIX

Let xi(n) denote a discrete time signal,

xi(n) = Aie
j(ωin+φi), (13)

where ωi = 2πfi, Ai is the amplitude and φi phase of the
signal. To simplify the expression we set Ai = 1 since it is
a constant that does not play any role in the finding of the
Fourier transform of xi(n).

The Fourier transform of xi(n), Xi(ω) from an N -point
DFT, is

Xi(ω) =

N−1∑
n=0

ej(ωin+φi)e−jωn

= ejφi

N−1∑
n=0

ejn(ωi−ω)

= ejφi
1− ejN(ωi−ω)

1− ej(ωi−ω)

= ej((
N−1

2 )ωi+φi)e−j(
N−1

2 )ω sin N
2 (ωi − ω)

sin 1
2 (ωi − ω)

= ejφiej
N−1

2 (ωi−ω) sin N
2 (ωi − ω)

sin 1
2 (ωi − ω)

,

where ω = r 2π
N , for r = 0 . . . N .
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