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Abstract. Dry analysis techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning 
Electron Microscope (SEM-EDS) and Fourier Transform Infra-red (FTIR) have been used to assess the 
Physico-chemical of waste sand samples, obtained from different local foundry. The casting process involved 
included Aluminum in shell sand, brass under alky urethane, grey iron in greensand moulding, high chrome 
using furan sand, steel casting in alkaline phenolic and lastly cast iron from greensand mould.  

The study revealed the transformations and changes which have taken place in the waste sand due to the 
casting process, in terms of chemical composition, mineralogy, morphology and bonding types. The study 
demonstrated that the waste sand after the casting process was a completely new material, compared to the 
original virgin sand used for moulding process. 
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1. Introduction 
 
The casting process mainly involves pouring of molten metal alloy obtained from the melting furnace into a 
mould. The molten metal is introduced in the mould cavity through the pouring cup (gating system), acting 
as plumbing network in order to fill the mould cavity (Jaiganesh and Prakasan, 2016) [1]. The metal solidifies 
taking shape and dimension of the mould cavity and possible cores. The cores and moulds are obtained 
during moulding and core making process, and are usually composed of refractory aggregates materials. A 
large majority of South African foundries use silica sand as refractory material in moulding purpose. After 
the knockout of the casting from the mould, a portion of sand is reused. Hundred reused of the sand is 
impossible because the sand has lost its properties in terms of fineness and refractoriness. Foundry practice 
is that a portion of the used sand is discarded to be replaced by new sand. Discarded used sand is generally 
destined for landfill on municipal site. According to the statistic from the South African Institute of 
Foundrymen (SAIF), South Africa disposes up to 300 000 tonnes of moulding waste sand per annum [2-4]. 
The nature of the waste sand is dominated by the refractory sand used during the moulding process.  This 
refractory sand represents up 75% of the mould. The rest of the components in the waste include binders, 
additives and metal. Studies conducted on the characterisation of the waste sand demonstrated that the cast 
alloy have also determined the nature of the waste, especially for non-ferrous casting such as copper based 
alloys (Deng, 2004) [5]. Most of previous conducted and documented studies have focused on wet 
characterisation, obtained after subjecting the sand to well prescribed environmental protocols. In addition 
to the separate characterisation techniques documented among which: the bulk chemical and mineralogical 
characters of the waste foundry sand conducted by Firat et al. (2012) [6]. Mustafa et al. (2010) [7], Mastella et 
al. (2014) [8], and Deng (2004) [5], few characterisation data on South African waste sand are documented. 
In addition to that, documents correlating several waste sand characteristic especially for the waste by-product 
physio-chemical properties when compared to virgin sand, are not well established [9-13.  

The aim of this work is to assess the physicochemical characteristics of the South African waste sand and 
compare the observed characters to virgin sand samples to make a correlation between the used 
characterisation techniques. The later, included bulk chemistry (XRF), mineralogy (XRD), morphological 
analysis (SEM) and residual organics (FTIR). 
 
2. Materials and Methods 
 
2.1. Material  
 
A total of six used sand samples were collected from local South African foundries, located in the Gauteng 
province. Each foundry also provided the corresponding virgin (new) sand sample used during the moulding 
process. Sand sampling and homogenization were conducted according to the waste soil sampling protocol 
as published by the US-PEA (Simmon, 2014) [14]. Approximately 0.5kg of each sand material was used as 
the final sample and was dried in an oven for 2 hours at 1050 C. 

The foundries to be part of this research study were selected on the basis of the top six highest sand 
disposal tonnages. The foundries were also chosen to include non-ferrous and ferrous casting operations. 
The list of foundries related to the casting processes and the disposed monthly sand tonnage is shown in 
Table 1. 
 
Table 1. List of foundries with the related casting processes. 
 

Foundry Sand Cast Alloy Disposed tonnage Sand Binder used 
S1 Al-Si Not obtain Shel Sand 
S2 Cu-Zn 15-20 Alkyd urethane 
S3 Fe (SG) 8000 Greensand 
S4 H-Cr 6000 Furan 
S5 Fe-C 7000 Alkaline Phenolic 
S6 Fe (SG) 6000 Greensand 
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2.2. Method 
 
The sequence diagram bellow reviews the methodology conducted on the collected foundry sands: 
 

 
 
Diagram 1. Summary of the conducted methodology. 
 

A four step process shown in the diagram 1 was used to fully analyse the sand samples described above: 
 

a. X-ray fluorescence (XRF) and X-ray diffraction (XRD) techniques were used to determine the bulk 
chemical composition respectively in terms of elemental chemical and mineralogical composition. An 
XRF Rigaku ZSX Primus II equipment was used for XRF while an XRD Rigaku Ultima equipment 
with PDXL analysis software was employed for XRD. 

 
b. Scanning electron microscope equipped with energy dispersed spectrum (SEM-EDS) was used to 

assess the morphology and to determine the chemical composition on a selected grain surface point 
in terms of sintering (fusion) and coating. A SEM TESCAN was employed for the grain morphology 
while the EDS analysis software, determined the chemistry of the desired grain surface point. 
 

c. Fourier Transform Infra-red (FTIR) spectrometer was used to determine residual organic group 
present in the sand sample. A Thermo Fisher Smart iTR Nicolet equipment was used for this purpose. 

 
3. Results and Discussion 
 
3.1. Chemical Analysis (X-Ray Fluorescence) Results 
 
Figure 1 bellow composed of chart A to F shows the chemical analysis obtained by XRF for the different 
waste sand samples with their corresponding new sand used in a particular foundry. The representative waste 
samples originated from the Aluminium, brass, grey iron, high chrome, and steel and cast iron foundries. The 
elements of interest in the sand sample were alloying elements present in the cast metal.  

All tested sand samples (chart A to F) displayed an increase in concentration of metallic alloying element 
present in the cast metal in the waste sand, compared to the concentration in the new sand. In all cases, the 
highest concentration in the waste sand compared to the new sand is related to the principal alloying elements 
of the cast metal. With exception of light metals (Alkali earth), and silicon, six out of the sixteen heavy 
stipulated metals were present in the waste sand samples regardless of the cast alloy. These metals included 
chrome (Cr), copper (Cu), lead (Pb), nickel (Ni), Manganese (Mn) and zinc (Zn).  

Aluminium (Al) concentration increased by 3.85% points in the aluminium casting waste sand (S1). As, 
depicted in chart A of Fig. 1. This augmentation in metallic content suggests a sand contamination promoted 
by the cast alloy (Al). 

The same could be said in the case of copper (Cu) and Zinc (Zn), which increased distinctively by 0.37% 
and 0.11% point in  the used sand obtained from the brass (S2) casting facility (chart B). The observed 
increases of these metals (Cu and Zn) could be related to the casting alloy. The latter, being brass. Lastly, the 
waste sand originating from the brass casting also showed an increase in lead (Pb) by 0.11% points. In this 
case, the presence of Pb is attributed to both: firstly, the binder modification (alkyd urethane) in order to 
fasten the curing time, a certain amount of lead in added (Alves et al., 2014) [15-16] secondly, the cast alloy. 
The latter, contains up to 8% of Pb, enhancing better machinability of brass (Maynard, 2008 [17]. 
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The iron (Fe) concentration increased in all ferrous casting waste sand samples and could be related to 
the  dominating main ingredient (Fe), existing within the cast alloy. Its content increased by 5.8% point, in 
the waste sand originating from the grey iron (S3) casting sand, shown in chart C. 2.93%, 6.77% and 4.97% 
points increase in the Fe content were also observed in the waste sand obtained from: the high chrome (S4) 
in chart D, steel (S5) from chart E and cast iron (S6) as present in chart F. 

The chrome content also increased by 1.7% points in the waste sand obtained from the high chrome 
casting sand (chart D) and by 0.78% points higher in the steel (S5) casting waste sand, as presented in chart 
E.  The appearance of chrome in these casting sands exposed the sand contamination promoted by the cast 
alloy, through the alloying element. Since, chrome represents the alloying element for these castings (high 
chrome and steel). Its content can reach 12% in steel and up to 30% in high chrome. In addition to that, 
waste greensand samples S3 and S6, individually obtained from grey and cast iron casting sand, revealed an 
increase in their chrome content by 0.19% in grey iron waste sand. It could be attributed to the bentonite 
clay, acting as the moulding binder. Since, Cr is present in the bentonite clay grain matrix (Alves et al., 2014) 
[15]. 

The manganese (Mn) content was also increased in all ferrous casting waste sands, in which the greensand 
system reported the highest content (chart C and F). The grey iron casting waste sand (S3) revealed an increase 
by 0.42% point as depicted in chart C. Chart F showed its increase by 0.56% point in the waste sand 
originating from the cast iron facility (S6). In both cases, the Mn augmented in waste samples using bentonite 
as their moulding binder, promoting the sand contamination in regards to Mn brought in by the binder. 
 

 
Chart A                                                             Chart B 

 

 
Chart C                                                                Chart D 
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Chart E                                                              Chart F 

 
Fig. 1. Bulk chemical composition the different foundry sand sample. 
 
3.2. Mineralogical Characterization (X-Ray Diffraction) 
 
Diffraction pattern 1 to 6 show the mineralogical composition obtained by XRD for the different waste sand 
samples with their corresponding new sand, used in the particular casting. The new sand spectra show the 
silica peak as the main mineral component in the sand. On the other hand, the obtained waste foundry sand 
spectra revealed the appearance of new peaks, indicating new mineralised phases within the waste samples. 
These new phases in the waste sands acted as impurities, which reduced the peak intensity of mineralised 
quartz (silica) as compared to the new sand. 

Diffraction pattern 1 shows the presence of anorthite and alumina phases in the waste from the shell 
sand, casting aluminium. While, the diffraction pattern 2 obtained from the brass waste alkyd urethane sand 
did not exhibit any new mineralised crystal phase. Diffraction pattern 3 obtained from grey iron using 
greensand revealed a crystallised phase of Microline. Anorthite was again observed in the high chrome casting 
waste furan sand from the diffraction pattern 4. Steel waste phenolic sand diffraction pattern 5 exhibits also 
anorthite and crystalline phase of wustite. Lastly, waste greensand acquired from cast iron casting (diffraction 
pattern 6) showed wustite and periclase as new mineralised phase within the waste sand. 

The appearance of crystallised anorthite (Na, Ca) Al2Si2O8) in all chemically bonded waste casting sands 
including shell (diffraction pattern 1), furan (diffraction pattern 4) and alkaline phenolic (diffraction pattern 
6), could be attributed to reaction taking place between the sand, binder and metal , promoted by the high 
casting temperature. Since, these specific waste sands (chemically bonded) revealed a relatively high content 
of alkali and alkaline earth elements. In regards, to potassium (K) and calcium (Ca). 

Feldspar and dolomitic mineral were found as new phase in the waste sands originating from greensand 
casting systems. Individually, microline (NaAlSiO3O8) was identified in the grey iron casting waste sand on 
spectra 3 and periclase (MgO) was observed in the cast ion waste casting sand as shown in spectra 6. These 
minerals as observed in waste greensand could be associated to the bentonite clay, used as moulding binder. 
As, sodium (Na) and magnesium (Mg) are constituent of the bentonite grain matrix.  In addition to that, their 
proportions were found higher in greensand as compared to their corresponding virgin sands and chemically 
bonded waste sand. 

Wustite phase (FeO) was detected in all ferrous casting waste sand systems (greensand and chemically 
bonded sands). These moulding waste sands derived the following cast alloys: high chrome and steel and cast 
iron. Its presence put forward an oxidation process of iron, contained in the metallic traces from the cast 
alloy in the waste sand. Since, this phase was only observed in waste casting sands producing ferrous castings 
(diffraction pattern 3, 4, 5 and 6). 
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Diffraction pattern 1: Aluminium casting sand XRD spectrum 
 

 
 
 
Diffraction pattern 2: Brass casting sand XRD spectrum 
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Diffraction pattern 3: Grey Iron casting sand XRD spectrum 
 

 
 
 
Diffraction pattern 4: High Chrome Casting Sand XRD Spectrum 
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Diffraction pattern 5: Steel Casting Sand XRD Spectrum   
 

 
 
 
Diffraction pattern 6: Cast Iron casting sand XRD spectrum 
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Silica (SiO2) was the dominating mineral phase in both sand states (waste and new). However, its peak 
intensity drastically decreased in high temperature casting alloys, using chemically bonded sand. This was 
noticed for furan waste sand casting high chrome (diffraction 3) and alkaline phenolic sand for steel 
(Diffraction pattern 5) and could be attributed to crystallographic metamorphose of SiO2 from trigonal to 
cubic, which leads to difference intensities of these superstructure reflection (Gusev et al., 2001) [18].  
While, in the case of greensand samples casting grey iron (diffraction 3) and cast iron (diffraction 6), the low 
intensity of the silica peak is associated to the new mineralised phases acting as impurities therefore, lowering 
the SiO2 peak intensity.  
 
3.3. Sand Grains Morphological Investigation (SEM-EDS) 
 
Figures 2 to 7 show the grains morphology of the refractory sands for the diverse casting process, investigated 
in this study (the new and the waste). It can be witnessed in all the cases that the surface of the virgin (new) 
sand grain is clean while the waste sand is characterised by a coated grain surface. 

The chemical nature of the coating was further discovered by EDS analysis, indicating the presence of 
residual binder and new phase materials on the waste grain surface.  

The pictures below review the SEM results for aluminium casting shell sand: 
 

 
 

Fig. 2. Aluminium sand grain SEM-EDS result. 
 

The picture bellow summarises the SEM results for brass casting alkyd urethane sand 
 

 
 

Fig. 3. Brass sand grain SEM-EDS result. 
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The picture bellow summarises the SEM results for aluminium casting shell sand: 
 

 
 

Fig. 4. Grey iron casting SEM-EDS result. 
 

The picture bellow summarises the SEM results for high chrome casting furan sand: 
 

 
 

Fig. 5. High chrome sand grain SEM-EDS result. 
 

The picture bellow summarises the SEM results steel casting alkaline phenolic sand: 
 

 
 

Fig. 6. Steel sand grain SEM-EDS result. 
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The picture bellow summarises the SEM results for cast iron greensand sand: 
 

 
 

Fig. 7. Cast iron sand grain SEM-EDS result. 
 

In the case of aluminium casting in shell moulding (Fig. 2), the EDS of the waste sand indicated the 
presence of Al-Si material incrusted on the grain sand. This phenomenon is possibly attributed or derived 
from the main cast alloy ingredient as reported by Penkaitis and Barbujiani (2012) [19], W. Fourie et al (2011) 
[20] and Y. Guney et al (2005) [21]. In addition to that, the observed sand grains morphology change, supports 
the new phase crystalline phase (anorthite) notice under XRD (spectra 1). 

Despite the fact that brass casting sand grains did not revealed any crusted material related to the cast 
alloy as saw in the case of aluminium casting in Fig. 2. The brass waste sand grain clearly indicated the presence 
of some coating on the refractory sand grain (Fig. 3). The EDS analysis results of the observed coating 
exposed the presence of Pb. This metal is used in the mould and core paint as metallic drying elements. The 
observed grain coating is possibly made of dried paint. The presence Pb support the chemical analysis results 
obtained under X-ray fluorescence (XRF). 

The waste greensand grain obtained independently from the grey iron casting (Figs. 4 and 7) displayed 
typical oolitic clayey materials coating the sand grain. The EDS results analysis acquired from the oolitilised 
waste sand grain, revealed the existence of Na and Mg, indicating the presence of active and dead clayey 
material. Furthermore, the EDS supported the notice increase of alkalis and alkaline earth element as noticed 
in the XRF. This was previously mentioned under the study conducted by Dainezi de Olivera and Bernadez 
Pecora, (2005) [22]. 

The waste sand grain from the high chrome and steel casting (Figs. 5 and 6), presented a glossy coating, 
revealing fused sand grains. The EDS analysis indicated the presence of Fe. The observed morphology 
changes supported the decrease in peak intensity as observed in the XRD (diffraction pattern 5 and 6) in 
terms of crystallographic changes from hexagonal to cubic cause by the high casting temperature.as earlier 
elaborated in the XRD of these specific sands. 
 
3.4. Residual Organic Group (FTIR) 
 
The transition pattern1 summarizes the obtained FTIR spectrum of the tested sands. Similarly, to the 
preceding conducted characterization technique XRD, the waste sand FTIR spectra, demonstrates that silica 
remains the main component of the refractory material, as notice at wavenumber 1185 cm-1. This was 
previously stated by Miguel et al. [23]. Nonetheless, the waste sand spectra provide information related to 
residual organic group and bonds types.  

Different transmittance intensities were observed from the tested waste sand samples. The new sands 
were not subjected to the FTIR analysis. Since, the sand did no go through any mixing (moulding) process. 
The analysis intended to identify the different organic and functional groups existing in the various waste 
foundry sand systems (greensand and resin sand), used in this study. 

Both waste sand systems (resin and greensand) revealed to possess a relatively similar composition based 
on their individual spectra shape. It is supported by the presence of silica as the main component of the 
foundry waste sands. However, the waste resin sand (chemically bonded sand) exhibited higher and wider 
band peak intensities, compared to the waste greensand samples. The observed peak band differences could 
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be explained by the presence residual organic matter and the bond vibration nature exiting in the various 
sand systems. 

Assuming the spectra were baselined resolved, all chemically bonded sands originating from different 
casting waste sands including the shell sand used in the production of aluminium (S1), the alkyd urethane 
moulding sands obtained from the brass casting (S2), the furan waste sand from the high chrome casting (S4) 
and lastly, the waste alkaline phenolic sand used in the production of steel (S5) have shown to have high silica 
(SiO2) band peak located at 1185cn-1 as compared to the both greensand waste (S3 and S6). Suggesting, an 
intense vibration of the existing Si-O bond, associated to its bending type. While, in the case of waste 
greensand samples, the low vibration intensity as observed in grey (S3) and cast (S6) iron, associated to the 
weak Si-O peak, could be attributed to its stretching vibration nature. 

Low peak band intensities of aromatic compounds were observed and identified within the region 1500- 
1700 in all chemically bonded sand, which could be attributed to the residual existing organic matter 
contained in the waste resin sand. Since, the identified peak exposed the presence of C=C bond from 
aromatic alkyl compounds. The latter, were find existent in the greensand waste sand as their spectra were a 
relatively flat at the same region. Based on the above observation it could be said that the nature of the binder, 
used for moulding purpose plays a vital role in the chemistry of the sand. In regards, to the organic matter 
and the bond vibration types as depicted in the transmittance pattern 1. 
 
4. Conclusion 
 
From the conducted study, noticeable changed were observed within the waste foundry sand when compared 
to its corresponding virgin (new) sand samples. The chemical analysis under XRF has shown silica as the 
primary constituent of the waste sand. However, metallic traces associated to the cast alloy were found in 
high proportion in the waste than in the raw (new) sand. Furthermore, new mineral phases, inexistent in the 
virgin sand, were found in the waste sand depending on the cast alloy and the binder type. In addition, 
morphology differences were observed from both grains types: new and waste. The latter, grains were coated 
by thin layers of residual binders.  Lastly, the waste and raw sand receded the same spectra under the FTIR. 
Nonetheless different band peak intensity was notice and attributed to the binder used. 
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