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ABSTRACT   

Thermo-acoustic cooling as an environmentally friendly refrigeration system is one of the research areas being 
pursued. Although not commercially available and simple to fabricate, the designing of thermo-acoustic coolers 
involves significant technical challenges. Many fundamental issues related to the thermo-acoustic effects and 
the associated heat transfer must be addressed. The most inhibiting characteristic of current thermo-acoustic 
cooling devices is the lack of efficiency. The stack has been identified as the heart of the device where the heat 
transfer takes place. Improving its performance will make thermo-acoustic technology more attractive. Most 
of the existing efforts have not taken thermal losses to the surroundings into account in the derivation of the 
models. Five different parameters describing the stack geometry and the angular frequency of the standing 
wave are considered. This work explores the use of a multi-objective optimization approach to model and to 
optimize the performance of a simple thermo-acoustic engine. The present study highlights the importance of 
thermal losses in the modelling of small-scale thermo-acoustic engines using a multi-objective approach. The 
unique characteristic of this research is the computing of all efficient optimal solutions describing the best 
geometrical configuration of thermo-acoustic engines. 
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INTRODUCTION 

In order to broaden the applications of Micro Electro-Mechanical Systems, sensor networks and small-scale 
remote systems, the development of miniature power systems is critically important. A lot of efforts are directed 
toward the development of miniature energy sources [1]. Small-scale power systems are subjected to certain 
limitations. For instance, the energy densities of batteries are small and scaled-down rotating machinery are 
challenging to fabricate. Therefore, thermo-acoustic engine is seen as a promising candidate for small-scale 
electricity generation when coupled with an electroacoustic transformer [2]. Apart from being environmentally 
friendly, thermo-acoustic systems are potentially highly reliable because of the simplicity of their structures 
and the limited number of moving parts. Thermo-acoustic processes involve heat and sound interactions and 
the thermal-to-acoustic energy conversion [3]. A schematic of a simple standing-wave thermo-acoustic engine 
(or prime mover) is shown in Figure 1. A piece of porous material (called stack) is the heart of the system 
where acoustic power is generated in the presence of sufficiently large externally maintained temperature 
gradient. Two heat exchangers located on the sides of the stack supplies and rejects the heat. The acoustic 
modes are defined by the resonator geometry. Under appropriate conditions, heat is added to gas parcels 
oscillating inside the stack at the moment of their compression and extracted at the moment of their rarefaction. 
As a result, an acoustic power is generated and, therefore, acoustic modes can be excited [3]. In order to 
generate electricity, an electroacoustic transformer installed at the open end of the tube will convert some of 
the acoustic power into electricity.  
The increased roles of thermo-viscous losses, thermal management and fabrication issues, in addition to the 
difficulty in integrating with heat sources, make the downsizing of thermo-acoustic systems challenging. 
Several previous studies report the development of miniature thermo-acoustic engines. The construction and 



performance of a relatively small 14 cm tube was documented by Hofler and Adeff [4]. Much smaller systems, 
down to a few centimetres in length, were also built by Symko et al. [5], but their design was not reported in 
detail sufficient for reproduction 
 

 

Figure 1: Thermoacoustic engine or prime mover 

A study conducted at the Energy research Centre of the Netherlands [6] show that the ratio between thermal 
losses and acoustic power changes with increasing acoustic power for thermo-acoustic devices. It suggests that 
heat losses by convection, conduction and radiation need to be adequately covered in the modelling especially 
with regards to miniaturization of the devices where thermal losses are expected to increase [7]. McLaughlin 
[8] has thoroughly analysed the heat transfer for a Helmholtz-like resonator, 1.91 cm in diameter and 3.28 cm 
in length. The loss to conduction has been estimated as 40% of the input power. The losses from convection 
inside and outside of the device have been estimated as 38%. Radiation accounts for 10% of the input power. 
This leaves only 12% of input power that can be used to produce acoustic work (Figure 2). Although these 
losses are approximations not meant to be highly accurate determinations, they suggest that these losses are 
significant when compared to total heat input and should be considered as design criterion. Therefore, this 
work aims to highlight one methodology to incorporate thermal losses in the design process. 

 

Figure 2: Heat flows from the power supply partitioned by the losses from radiation, conduction, convection 
and the power input 

 
MATHEMATICAL ANALYSIS AND OPTIMIZATION 

Optimization techniques as a design aid for thermo-acoustic engines have been under-utilized. Most previous 
studies [9, 10] have been limited to parametric studies to estimate the effect of single design parameters on 
device performance while ignoring thermal losses to the surroundings. These parametric studies are unable to 
capture the nonlinear interactions inherent in thermo-acoustic models with multiple variables. Therefore, these 
approaches only guarantee locally optimal solutions. In all likelihood, each optimal design is a local optimum 
as the solution obtained is optimal (either maximal or minimal) within a neighbouring set of candidate solution. 
A new approach is proposed in this study to search for global optimum. These solutions will be optimal among 
all possible solutions in a specific domain, not just those in particular neighbourhood of variables. 
This work considers previous optimization efforts by Zink et al. [7] and Trapp et al. [11] in order to illustrate 
the optimization of thermo-acoustic systems. Thermal losses to the surroundings that are typically disregarded 



are taken into account. These losses have been incorporated in the modelling as objectives functions. An effort 
to effectively implement the Epsilon-constraint method for producing the Pareto optimal solutions of the multi-
objective optimization problem is carried out in this work. This has been implemented in the modelling 
language GAMS (General Algebraic Modelling System, www.gams.com [12]). 
 

MODELLING APPROACH 

In this section, the modelling approach for the physical standing wave engine depicted in Figure 1 is presented; 
the development of the mathematical model equations is included in Tartibu et al. studies [13]. The problem is 
reduced to a two-dimensional domain because of the symmetry present in the stack. Two constant temperature 
boundaries are considered; namely, one convective boundary and one adiabatic boundary, as shown in Figure 
3. For the model, the stack geometry and the frequency of the sound wave are considered. The model considers 
variations in operating conditions and the interdependence of stack location and geometry in a quarter-
wavelength (λ/4) resonator tube.  
Five different parameters are considered to characterize the stack: 

 L: stack length, 
 H: stack height, 
 Za: stack placement (with Za=0 corresponding to the closed end of the resonator tube), 
 dc: channel dimension, and 
 N: number of channels. 

 

 

Figure 3: Computational domain 

 
Those parameters have been allowed to vary simultaneously. Five different objectives as described by Trapp 

et al. [11], namely two acoustic objectives — acoustic work ( W ) and viscous resistance ( VR ) — and three 

thermal objectives — convective heat flow ( conv

o

Q ), radiative heat flow ( rad

o

Q ) and conductive heat flow ( cond

o

Q

) — are considered to measure the quality of a given set of variable values that satisfy all the constraints. 
Ultimately, optimizing the resulting problem generates optimal objective function value 
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are conflicting in nature [11, 14], a multi-objective optimization approach has been used.   

ILLUSTRATION OF THE OPTIMISATION PROCEDURE OF THE STACK 

Boundary conditions 

The five variables— N,Za,dc,H,L —may only take values within the certain lower and upper bounds. The 

feasible domains for a thermo-acoustic stack are defined as follows: 
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Za,dc,H,L and N  

with kmin 2dc   and kmax 4dc   [10]   

δk is the thermal penetration depth given by: 
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where ω=2πf is the angular frequency of the sound wave, f is the design frequency and K the thermal 
conductivity. Here, ρ and cp are the density and isobaric specific heat of the gas, respectively. 

  H2tdcN w   (3) 

where wt  represents the wall thickness around a single channel  

The following boundary conditions are defined: 

1. constant hot side temperature  hT  or  hotT ; 

2. constant cold side temperature  CT  or  ColdT ;  

3. adiabatic boundary, modelling the central axis of the cylindrical stack: 
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4. free convection and radiation to surroundings (at T ) with temperature dependent heat transfer coefficient 

( h ), emissivity (  ), Stefan Boltzmann constant ( Bk ) and thermal conductivity ( K ): 
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where γ, c and Γ are the isentropic coefficient, the speed of sound and the critical temperature gradient 
respectively.  
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Viscous resistance 
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where µ, AC and δV (given by 

2

) are respectively the dynamic viscosity of the gas, the area of the channel 

and the viscous penetration depth. 

Convective heat flow 
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where Pr  is the Prandtl number; ST  is the surface temperature; T  is the (constant) temperature of the 

surroundings;   is the viscosity of the surrounding gas; and   is the thermal diffusivity of the surrounding 

gas (air).  
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Radiative heat flow 
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Conductive heat flow 
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And after integration 
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Details description of the derivations of Equations 3 to 29 are available in reference [7], [11] and [13]. 

SOLUTION METHODOLOGY OF THE MULTI-OBJECTIVE MATHEMATICAL PROGRAMMING 
PROBLEMS 

All the expressions involved in the mathematical programming formulation (MPF) have been presented in 
the previous section. Together with the following expressions, they represent a mixed-integer nonlinear 
programming (MINLP) problem: 

( ) ( )
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This mathematical model characterizes the essential elements of a standing wave thermo-acoustic engine. 
Restricted cases of objectives functions in order to identify general tendencies of the structural variables to 
influence individual objective components is described in Tartibu et al. [13] studies . To illustrate the proposed 
approach, a thermo-acoustic couple (TAC) as described in Atchley et al. [15], which consists of a parallel-plate 
stack placed in helium-filled resonator is considered. All relevant parameters are given in Table 1 and Table 2. 

Table 1: Specifications for thermo-acoustic couple 

Parameter Symbol Value Unit 
Isentropic coefficient  1.67  

Gas density  0.16674 kg/m3 

Specific heat capacity of the gas pc  5193.1 J/kg.K 

Dynamic viscosity of the gas  1.9561.10-5 kg/m.s 

Maximum velocity maxu  670 m/s 

Maximum pressure maxp  114003 Pa 

Speed of sound c 1020 m/s 

Thickness plate wt  1.91.10-4 m 

Frequency f  600-700-800 Hz 

Thermal conductivity Helium gk  0.16 W/(m.K) 

Thermal conductivity stainless steel Sk  11.8 W/(m.K) 

Table 2: Additional parameters used for programming 

Parameter Symbol Value Unit 

Temperature of the surrounding T  298 K 

Constant cold side temperature CT  300 K 

Constant hot side temperature HT  700 K 

Wavelength    1.466 m 

Thermal expansion    1/K 

Thermal diffusivity  2.1117E-5 m2s-1 
T/1



Critical temperature gradient Γ 3  
All proposed MINLP models are solved by GAMS 23.8.1, using LINDOGLOBAL solver on a personal 
computer Pentium IV 2.1 GHz with 4 GB RAM.  

For the case of multiples objective optimization, all five objective components are considered by regarding 

acoustic work ( W ), viscous resistance ( VR ), convective heat flow ( conv

o

Q ), radiative heat flow ( rad

o

Q ) and 

conductive heat flow ( cond

o

Q ) as five distinct objective components. The optimization task is formulated as a 

five-criterion mixed-integer nonlinear programming problem (MPF) that simultaneously minimizes the 
negative magnitude of the acoustic work ( W ) (since it is the only objective to be maximized), the viscous 

resistance ( VR ), the convective heat flow ( conv

o

Q ), the radiative heat flow ( rad

o

Q ) and the conductive heat flow 

( cond

o

Q ). 
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subject to constraints in Equations 3 and 21, and variable restrictions in Equation 33. In this formulation, 

 N,dc,Za,H,L  denotes the geometric parameters. 

There is no single optimal solution that simultaneously optimizes all the five objectives functions. In these 
cases, the decision makers are looking for the “most preferred” solution. To find the most preferred solution of 
this multi-objective model, the augmented  -constraint method (AUGMENCON) as proposed by Mavrotas 

[16] is applied. The AUGMENCON method has been coded in GAMS. The code is available in the GAMS 
library (http://www.gams.com/modlib/libhtml/epscm.htm) with an example. While the part of the code that has 
to do with the example (the specific objective functions and constraints), as well as the parameters of 
AUGMENCON have been modified in this case, the part of the code that performs the calculation of payoff 
table with lexicographic optimization and the production of the Pareto optimal solutions is fully parameterized 
in order to be ready to use. 
Practically, the  -constraint method is applied as follows: from the payoff table the range of each one of the 

p-1 objective functions that are going to be used as constraints is obtained. Then the range of the ith objective 
function is divided into qi equal intervals using (qi-1) intermediate equidistant grid points. Thus in total (qi + 
1) grid points that are used to vary parametrically the right hand side (εi) of the ith objective function are 
obtained (detailed descriptions available in reference [16]). The total number of runs becomecon (q2 + 1) (q3 
+ 1) …  (qp + 1). The augmented  -constraint method for solving model (Equation 31) can be formulated 

as: 
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where idir  is the direction of the ith objective function, which is equal to -1 when the ith function should be 

minimized, and equal to +1, when it should be maximized. Efficient solutions to the problem are obtained by 

parametrical iterative variations in the εi. is  are the introduced surplus variables for the constraints of the MMP 

problem. ii1 r/sr  are used in the second term of the objective function, in order to avoid any scaling problem. 

The formulation of Equation 32 is the augmented ε-constraint method due to the augmentation of the objective 
function W  by the second term. The following constraints (upper and lower bounds) have been enforced on 

variables in order for the solver to carry out the search of the optimal solutions within each identified ranges: 
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We use lexicographic optimization for the payoff table (detailed descriptions available in reference [13]); the 
application of the model (Equation 32) will provide only the Pareto optimal solutions, avoiding the weakly 
Pareto optimal solutions. Efficient solutions to the proposed model have been found using AUGMENCON 
method and the LINDOGLOBAL solver. To save computational time, the early exit from the loops as proposed 
by Mavrotas [16] has been applied. The range of each five objective functions is divided in four intervals (five 
grid points). The integer variable N has been given values of 20-25-30-35-40-45-50.  In addition, the frequency 

was set (arbitrary) to 600 Hz-700 Hz- 800 Hz. The maximum CPU time taken to complete the results is 
2050.212 sec. The following section report only sets of Pareto solutions obtained. 

RESULTS AND DISCUSSIONS 

Figure 4 represents the Pareto optimal solutions graphically; these results shows that there are numerous 
optimal solutions that optimizes the geometry of the stack and highlights the fact that the geometrical 
parameters are interdependent (no clear relation between variables could be derived), supporting the use of a 
multi-objective approach for optimization of thermo-acoustic engines. To maximize acoustic work W and 
minimize viscous resistance and thermal losses simultaneously, there is a specific stack length (L) to which 
correspond a specific stack height (H), a specific stack spacing (dc) and a specific number of channels (N). It 
should be noted that in all cases, locating the stack closer to the closed end produced the desired effect. All 
Pareto optimal solutions can be computed in order for the decision maker to select his preferred choice. 
 

    

(a) Frequency = 600 Hz    (b) Frequency = 700 Hz 

 

(c) Frequency = 800 Hz 

Figure 4: Optimal structural variables  

 

These optimal solutions are then used to construct Figure 5 representing respectively acoustic work, viscous 
resistance and thermal losses plotted as a function of N, L, dc and H. The unique contribution of this work is 
the ability to quantify all the thermal losses and select the best geometrical configuration of the stack 
accordingly. Therefore, the designer can simultaneously maximise acoustic work and minimise losses (viscous 



resistance as well as heat flows) by considering the thermal efficiency (η) which can be defined as the ratio of 
the work output over the sum of the work output and losses as follows: 

condradconvv QQQRW

W


        (34) 

This ratio can be used to compare the results obtained by the proposed augmented ε-constraint method and 
identify the preferred solution. 

 

   

   

 

Figure 5: Acoustic work, viscous resistance and heat flows 

CONCLUSION 

Previous studies reveal that scaling down the device leads to an increase of the ratio between the surface area 
and the active volume, resulting in higher thermal losses. These thermal losses - the convective, radiative and 
conductive heat flow - need careful attention since they are not adequately included in current modelling 
approaches. An estimate of heat losses shows that they are significant relative to the total energy supplied to 
the thermo-acoustic engine (TAE). This provides a clear motivation to include the aforementioned losses in 
the modelling approach in an effort to improve the performance of the devices. A new mathematical modelling 
approach is proposed to model and optimize thermo-acoustic engines while taking into account thermal losses. 
The idea of incorporating thermal losses in the modelling and optimization of TAE gives the decision maker a 
clear picture of expected magnitude and the ability to search for the configuration that will simultaneously 
minimize them. This approach is used to compute the optimal set of parameters describing the geometry of the 
device: the stack length, stack height, stack position from the closed end of the TAE, stack spacing and the 



number of channels. These are the variables in the mathematical modelling formulation. The performance of 
the device is measured through the acoustic (work output and viscous resistance) and the thermal losses 
(convective, radiative and conductive heat flow) that have been used as objective functions to measure the 
quality of each set of variable values that satisfies all of the constraints. This problem has been formulated as 
a five-criterion mixed-integer nonlinear programming problem. This formulation allows for identifying the 
implication of each objective emphasis on the geometry of the stack. A case study is used for illustration. A 
set of objective functions and Pareto optimal solutions are computed in this work and guidance for the decision 
maker’s selection of the preferred solution is suggested.  
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