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Introduction

Fredholm theory in Banach algebras had its start with the two papers by Barnes,
[5, 6]. In [6] the author defines Fredholm elements of a ring as those elements
which are invertible modulo the socle. This set of Fredholm elements forms an
open semigroup on which the author defines a generalized index function. The
index function is based on the order of an ideal. The index function is then shown
to satisfy a multiplicative property and to be continuous on the set of Fredholm
elements. In [10], the authors generalize the definition of a Fredholm element to
elements which are invertible modulo an ideal. On such an ideal a trace supplies
the structure required to define an index function. The content of [10] and [12]
describe the development of this theory and shows that the index defined in this
way has the same desirable attributes as the index for Fredholm operators defined
on a Banach space relative to the ideal of compact operators. In addition to the
papers by Barnes, see also [7], Chapter F. In this thesis we are going to focus on
an index function defined on Fredholm elements in a Banach algebra relative to
an ideal on which a trace is defined. The basic properties of this index function
is developed in [10]. However, one fact that eluded the authors of [10] was to
prove that an index zero Fredholm element can be decomposed as the sum of an
invertible and a socle element. One of the goals of this thesis is to prove that an
index zero Fredholm element has the property that it can be written as a sum of
an invertible element and a socle element. We prove this in Chapter 2, section
2.4 and we also refer the reader to [12].

In the context of spectral theory, a regularity is a generalization of the group
of invertible elements in a Banach algebra. Just as the spectrum of an element
is defined relative to the group of invertible elements, we define the R - spec-
trum of an element relative to a regularity R. A component concept is that of a
semiregularity, and the properties of regularities and semiregularities have been
extensively investigated by Müller and others and documented in [23], and [24].
Some regularities and semiregularities have an interesting property of being spec-
tral radius preserving. A second goal in this thesis is to identify spectral radius
preserving regularities and semiregularities. In [17] the authors present us with a
way of identifying spectral radius preserving regularities and semiregularities. A
theme of Chapter 3 is the use of this theorem in investigating the spectral radius
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preserving properties of certain regularities and semiregularities.

The thesis is organized as follows. In chapter 1 we gather basic notions and
facts that will be used in later chapters. New results in the thesis appear in
chapters 2 and 3. When we refer to Theorem x.y.z in the thesis, it is Theorem z
in section y of chapter x.
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Chapter 1

Banach algebras and spectral
theory

1.1 Overview

In this chapter we set up all the tools we need for our discussions to come. This
includes the definitions of all the basic concepts we will require. Having these
tools readily available will allow us to follow a train of thought without being
sidetracked by the definition of basic concepts. For ease of reference, we also
state Jacobson’s Density Theorem.

1.2 Banach algebras

An algebra is a vector space A over a field K, with a multiplication operation
such that for all x, y, z ∈ A and λ ∈ K:

1. x(yz) = (xy)z

2. (x+ y)z = xz + yz

3. x(y + z) = xy + xz

4. λ(xy) = (λx)y = x(λy).

If, in addition, A is a Banach space for a norm || · || and satisfies the norm in-
equality ||xy|| ≤ ||x|| · ||y||, for all x, y ∈ A, we say that A is a Banach algebra.

If the field K is either R or C, the Banach algebra is called a real or complex
Banach algebra.

6



An element 1 ∈ A such that for all x ∈ A

1x = x1 = x

is called an identity of A. In this thesis 1 will always denote the identity of a
Banach algebra. When we wish to emphasize the Banach algebra, we will use 1A
to represent the identity.

If a Banach algebra has an identity, it is unique and the Banach algebra is
called unital. If a Banach algebra A has an identity 1, we can assume that
||1|| = 1, otherwise we can replace || · || with an equivalent norm ||| · |||, satisfying
|||1||| = 1 and |||xy||| ≤ |||x||| · |||y||| for all x, y ∈ A.

If a Banach algebra A does not have an identity, it is always possible to em-
bed it isometrically in the Banach algebra with identity Ã = A × C. Here we
define the operations and the norm as:

1. (x, α) + (y, β) = (x+ y, α + β),

2. λ(x, α) = (λx, λα),

3. (x, α) · (y, β) = (xy + βx+ αy, αβ),

4. ||(α, x)|| = ||x||+ |α|

In this document, A will always represent a complex, unital Banach algebra.

A set B is called a subalgebra of A if B is a subspace of A and B is algebraically
closed under the operation of multiplication.

A Banach algebra A is called commutative if xy = yx for all x, y ∈ A.

If X is a (complex) Banach space, denote by L(X) the Banach space of bounded
linear operators defined on X. If we define multiplication on L(X) as composi-
tion of operators, then L(X) becomes a Banach algebra under the operator norm
||T || = sup{||Tx|| : ||x|| = 1}, because ||ST || ≤ ||S|| · ||T || for all S, T ∈ L(X).
The identity in L(X) is the operator I in L(X). L(X) is not commutative, unless
dimX = 1.

An element x ∈ A, is called left invertible (respectively right invertible) if there
exists y ∈ A such that yx = 1 (respectively xy = 1). The element y is called a left
inverse (right inverse) of x. If an element x ∈ A is both left and right invertible,
the left and right inverses coincide and x is called invertible. In that case the
inverse of x is denoted by x−1.
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The sets of left invertible, right invertible and invertible elements in A are de-
noted by A−1

l , A−1
r and A−1 respectively.

An element a ∈ A is called nilpotent if there exists n ∈ N such that an = 0.

An element p ∈ A such that p2 = p is called an idempotent.

A nonzero idempotent p is called minimal if pAp is a division algebra.

A set W of idempotents of A is orthogonal if ef = fe = 0 for e, f ∈ W and
e 6= f .

Two elements a and b in a Banach algebra A are called similar if there exists
an element u ∈ A−1 such that a = u−1bu.

An element a of a Banach algebra A is called a left topological divisor of zero if

inf{||ax|| : x ∈ A, ||x|| = 1} = 0.

Similarly, a is a right topological divisor of zero if

inf{||xa|| : x ∈ A, ||x|| = 1} = 0.

Let A be a Banach algebra. A set I ⊂ A is called a left (right) ideal in A if I is
a linear subspace of A and ax ∈ I (xa ∈ I) for every a ∈ A, x ∈ I. If I is both a
left and a right ideal of A we will call it a two-sided ideal. An ideal (left, right or
two-sided) I of A is called proper if I 6= A.

A (left, right, two-sided) ideal I of A is minimal if I 6= {0} and if for any (left,
right, two-sided) ideal I ′ ⊂ I either I ′ = {0} or I ′ = I.

A (left, right, two-sided) ideal I of A is called maximal if I is a proper ideal
and if the only proper ideal (left, right, two-sided) that contains I is I itself.

Let I be a closed two-sided ideal of A. Then the quotient A/I is a Banach
space for the norm

||x+ I|| = inf{||x+ u|| : u ∈ I}

where

A/I = {x+ I : x ∈ A}
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and addition and scalar multiplication are defined by

(x+ I) + (y + I) = (x+ y) + I and

α(x+ I) = αx+ I

for all x, y ∈ A and α ∈ C.
With the above norm, the quotient Banach space A/I becomes a Banach algebra
because

||(x+ I) · (y + I)|| ≤ ||x+ I|| · ||y + I||

for all x, y ∈ A if we define multiplication in A/I by

(x+ I) · (y + I) = xy + I.

1.3 Spectral theory

Let A be a Banach algebra. For x ∈ A we define the spectrum of x as

σ(x) = {λ ∈ C : λ− x /∈ A−1}.

The following two results are stated without proof and demonstrate an interesting
property of the spectrum function.

Theorem 1.3.1 ([24], Theorem 1.1.29) Let a, b ∈ A and let λ be a non-zero
complex number. Then ab− λ is left (right) invertible if and only if ba− λ is left
(right) invertible.

Corollary 1.3.2 ([24], Corollary 1.1.30) Let x, y be elements of a Banach alge-
bra A. Then

σ(xy) \ {0} = σ(yx) \ {0}.

We define the spectral radius of x ∈ A as

r(x) = max{|λ| : λ ∈ σ(x)}.

Let A be a Banach algebra. An element a ∈ A is quasinilpotent if σ(x) = {0}.
The set of all such elements is denoted by QN(A).

Let K ⊂ C, K compact. Then ηK denotes the connected hull of K, i.e., ηK
is the union of K with the bounded components of the complement of K ([20], p
342).
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1.4 The Radical and the Socle of a Banach al-

gebra A

Let A be a Banach algebra. Two important ideals for A is the radical of A and
the socle of A. We describe these here. We state the following result without
proof:

Theorem 1.4.1 ([24], Theorem 1.1.41) Let A be a Banach algebra. The follow-
ing sets are identical:

1. the intersection of all maximal left ideals in A.

2. the intersection of all maximal right ideals in A.

3. the set of all x ∈ A such that 1− ax is invertible for every a ∈ A.

4. the set of all x ∈ A such that 1− xa is invertible for every a ∈ A.

The set of all x with the properties 1 - 4 in the previous theorem is called the
radical of A and we will denote it by RadA.

A is said to be semisimple if RadA = {0}. A is called semiprime if 0 6= u ∈ A
implies there exists x ∈ A such that uxu 6= 0. All semisimple Banach algebras
are semiprime ([8], Proposition VI.30.5).

Let {Iλ : λ ∈ Λ} be a family of left (right) ideals in an algebra A. Then the
smallest left (right) ideal that contains each Iλ is called the sum of the ideals Iλ.
The sum of all minimal left (right) ideals in A is called the left (right) socle. The
left (right) socle exists if and only if A contains minimal left (right) ideals. If
the left and right socles exist and are equal, then the resulting two-sided ideal is
simply called the socle of A. We denote the socle of A by SocA.

If I is a closed ideal in A then b ∈ A is called Riesz relative to I if b+I ∈ QN(A/I).
We denote by R(A, I) the set of elements in A which are Riesz relative to I. The
set kh(I) is defined by kh(I) := {b ∈ A : b + I ∈ Rad(A/I)}. The following
inclusions are clear:

I ⊂ kh(I) ⊂ R(A, I).

An element a 6= 0 in a semiprime Banach algebra A is called of rank one if there
exists a linear functional fa on A such that axa = fa(x)a for all x ∈ A.

Minimal idempotents are examples of rank one elements ([8], Proposition VI.31.3),
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and conversely, if a is a rank one element, then p = fa(1)−1a is easily seen to be
a minimal idempotent.

The finite rank elements of A, denoted by F (A), is the set of all a ∈ A of
the form a =

∑n
i=1 ai with each ai a rank one element. By [26], Lemma 2.7, F (A)

is an ideal in A. In the case of a semiprime Banach algebra, F (A) = SocA.

If X is a Banach space, then two well known ideals in the Banach algebra L(X)
are the closed ideal K(X) of compact operators defined on X and the ideal F(X)
of finite rank operators defined on X.

1.5 Regularities and semiregularities

Within the spectral theory of Banach algebras lie a vast number of spectra, de-
fined for a single element of a Banach algebra. These spectra have been investi-
gated extensively. It is an interesting question as to whether all spectra can be
described axiomatically. Such a theory would attempt to formulate properties
characteristic of spectra in general and provide a means of classification. Poten-
tially, the theory would define spectra in a simple and general manner. To date,
significant progress has been made in this regard, and the topic remains an active
and widely discussed issue for researchers in the field.

Research in this direction began in 1974 when Zbigniew S lodkowski and Wies-
law Z̊elazko ([30]) examined the joint spectrum of an n-tuple of elements in a
commutative, complex, unital Banach algebra. Their work examined the basic
properties of a number of familiar spectra in the literature, and focused on estab-
lishing the spectral mapping theorem for these spectra. In 1979 Z̊elazko followed
up on earlier progress made in [31]. However, there arise a number of spectra,
usually defined for a single element of a Banach algebra, that are not covered by
the axiomatic theory of Z̊elazko.

In 1996, Vladimı́r Kordulla, Vladimir Müller and Mostafa Mbekhta addressed
this issue and created the theory of regularities in [15] and [31]. Their unique
idea was not to describe a spectrum axiomatically, but rather to describe the
underlying set of elements in a Banach algebra which gives rise to the spectrum.
Their work was initiated by a simple axiomatic definition of a regularity chosen
in such a way that there were many natural classes of elements in a Banach
algebra satisfying it. These classes included the collection of invertible elements,
left and right invertible elements, the collection of all elements that are not left
(right) topological divisors of zero, and various classes of operators in the Banach
algebra L(X). The principal consequence of the theory of regularities was that
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every regularity R gave rise to a corresponding spectrum σR defined by

σR(a) = {λ ∈ C : λ− a /∈ R}

for every a ∈ A.

The definition of a regularity provided a starting point from which to develop
the theory further. In 2000, Müller introduced the theory of semiregularities
([23]). By dividing the axioms of the definition of a regularity into two halves, it
gave rise to what Müller termed lower semiregularity and upper semiregularity.
As with regularities, semiregularities gave rise to spectra which only satisfied a
one-way Spectral Mapping Theorem. The spectra arising from regularities satisfy
the Spectral Mapping Theorem. Semiregularities were defined in such a way that
every regularity was both a lower semiregularity and an upper semiregularity.
Because of this there existed a multitude of examples of semiregularities. How-
ever, the discovery of lower semiregularities that were not upper semiregularities
and vice versa demonstrated that these theories were by no means symmetric,
and gave merit to Müller’s work. Furthermore, it provided a means with which
to classify familiar spectra like the exponential spectrum and the Weyl spectrum
which did not satisfy the definition of a regularity. In essence, semiregularities
completed the theory of regularities.

Regularities have been a research interest since 1996. The theory has been
examined in connection with various classes of bounded linear operators (defined
by means of kernels and ranges) ([19]), Fredholm theory ([17]), commutative
Banach algebras and recently, generalized invertibility ([18]). The notions defined
in this section will be investigated in Chapter 3. For all undefined concepts
concerning regularities and semiregularities we refer the reader to [15, 19, 23, 24].

Definition 1.5.1 ([23], Definition 1) Let R be a non-empty subset of a Banach
algebra A. Then R is called a lower semiregularity if

1. a ∈ A, n ∈ N, an ∈ R =⇒ a ∈ R,

2. if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1A
and ab ∈ R then a, b ∈ R.

Müller gives us the following simplified way of showing that a nonempty subset
of a Banach algebra is a lower semiregularity.

Lemma 1.5.2 ([23], Remark 3) Let A be a Banach algebra and suppose that
R ⊂ A is a nonempty subset satisfying

a, b ∈ A, ab = ba, ab ∈ R =⇒ a, b ∈ R

Then clearly R is a lower semiregularity.
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Definition 1.5.3 ([23], Definition 10) A subset R of a Banach algebra A is called
an upper semiregularity if

1. a ∈ R, n ∈ N =⇒ an ∈ R,

2. if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1A
and a, b ∈ R then ab ∈ R,

3. R contains a neighbourhood of the unit element 1A.

Again, Müller gives us the following simplified way of showing that a nonempty
subset of a Banach algebra is an upper semiregularity.

Lemma 1.5.4 ([23], Remark 11) Let R be a nonempty subset of a Banach algebra
A. Suppose R is a semigroup that contains a neighbourhood of 1A. Then R is an
upper semiregularity.

A regularity R is both an upper and a lower semiregularity.

Definition 1.5.5 ([24], Definition 1.6.1) A subset R of a Banach algebra A is
called a regularity if

1. if a ∈ A, n ∈ N then a ∈ R ⇐⇒ an ∈ R,

2. if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1A
then a, b ∈ R ⇐⇒ ab ∈ R.

The following theorem provides us with a simplified way to show that certain sets
are regularities.

Theorem 1.5.6 ([24], Theorem 1.6.4) Let R be a non-empty subset of a Banach
algebra A satisfying

ab ∈ R ⇐⇒ a ∈ R and b ∈ R
for all commuting elements a, b ∈ A. Then R is a regularity.

The property in Theorem 1.5.6 is referred to as the P1 property and we call a
regularity that satisfies this property a P1 regularity.

We now generalize the property mentioned in Theorem 1.3.1 and Corollary
1.3.2. Let A be a Banach algebra and M ⊂ A. Let a, b ∈ A, λ ∈ C, λ 6= 0. If M
satisfies

λ− ab ∈M ⇐⇒ λ− ba ∈M
then we will say that M satisfies the Jacobson property.

A regularity (semiregularity) R in a Banach algebra A assigns to each a ∈ A
a subset σR(a) of C called the spectrum of a relative to R with

σR(a) = {λ ∈ C : λ− a /∈ R}.

In Chapter 3 we are going to compare regularities (semiregularities) R and S
in A with R ⊂ S and also investigate the spectra σR(a) and σS(a), a ∈ A.
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1.6 Jacobson’s Density Theorem

Let A and B be Banach algebras. We call a linear map T : A→ B a homomor-
phism if T (ab) = (Ta)(Tb) and T1A = 1B for all a, b ∈ A.

Let A be a complex Banach algebra and let X be a complex vector space of
dimension greater than or equal to 1. Let L(X) be the algebra of linear opera-
tors on X. Let π : A→ L(X) be a nontrivial homomorphism. Then we call π a
representation of A on X.

If a linear subspace Y of X satisfies π(x)Y ⊂ Y for all x ∈ A, we say that
Y is invariant under π. A representation π is said to be irreducible if the only
linear subspaces invariant under π are {0} and X.

The representation π is said to be bounded if X is a Banach space and if π(x) is
a bounded linear operator on X for all x ∈ A. It is said to be continuous if it is
bounded and if there exists a constant C > 0 such that ||π(x)|| ≤ C||x|| for all
x ∈ A.

Theorem 1.6.1 (Jacobson’s Density Theorem) ([1], Theorem 4.2.5) Let π be a
continuous irreducible representation of a Banach algebra A on a Banach space
X. If ξ1, ..., ξn are linearly independent in X and if η1, ..., ηn are in X there exists
a ∈ A such that π(a)ξi = ηi, for i = 1, ..., n.

Corollary 1.6.2 (A. Sinclair) ([1], Corollary 4.2.6) With the hypotheses of The-
orem 1.6.1, we suppose further that η1, ..., ηn are linearly independent. Then there
exists a, invertible in A, such that π(a)ξi = ηi for i = 1, ..., n.
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Chapter 2

The index for Fredholm elements
in a Banach algebra via a trace

2.1 Introduction

The existence of a continuous trace on an operator ideal of operators on a Banach
space has long been known to provide a useful tool for developing the Fredholm
theory of operators (see for instance the monograph of A. Pietsch, [25] and the
paper [13]). The problem of defining traces on ideals in a Banach algebra attracted
the attention of many authors, (see the papers by Puhl, [26] and Aupetit and
Mouton, [2]). The main thrust of these papers was to show that a trace and a
Fredholm determinant exist on the socle of a semisimple Banach algebra ([2], [26])
and on the question of extending the trace or determinant to larger ideals ([26] and
[3]). Our aim in this chapter, on the one hand, is to present an axiomatic approach
by assuming a trace to exist and then to show how useful such a trace is by
applying it firstly to develop the index theory for abstract Fredholm elements in a
semisimple Banach algebra (see the research notes of Barnes, Murphy, Smyth and
West, [7] and of Caradus, Pfaffenberger and Yood, [9]). Here, the commutativity
property of the trace provides some elegant proofs of the properties of the index.

Next, we define a concept which is central for the rest of the chapter.

Definition 2.1.1 ([10], Definition 2.1) Let I be an ideal in a Banach algebra A.
A function τ : I → C is called a trace on I if:
(TN) τ(p) = 1 for every rank one idempotent p ∈ I.
(TA) τ(a+ b) = τ(a) + τ(b) for all a, b ∈ I.
(TH) τ(αa) = ατ(a) for all α ∈ C and a ∈ I.
(TC) τ(ba) = τ(ab) for all a ∈ I and b ∈ A.

We shall refer to an ideal on which a trace is defined as a trace ideal. A trace
τ on I is called nilpotent if τ(a) = 0 for all nilpotent elements a ∈ I.
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In the following discussion we present three examples of traces in Banach
algebras.

Example 2.1.2 Let X be a Banach space and let T be a continuous linear
operator onX such that its range Y := R(T ) is finite-dimensional. Let {x1, ..., xn}
be a basis for Y . Then there exist continuous linear functionals {x′1, ..., x′n} such
that

Tx =
n∑
i=1

x′i(x)xi = (
n∑
i=1

x′i ⊗ xi)(x).

The trace τ(T ) of T is defined as

τ(T ) =
n∑
i=1

x′i(xi).

Note that this is the trace of the matrix (x′i(xj))
n
i,j=1, which, as can easily be

checked, is the matrix representing the operator T restricted to Y . Since this
trace is independent of the choice of the basis, it is a well defined number. From
the well known properties of the matrix trace it follows that the conditions (TN),
(TA), (TH) and (TC) above are satisfied for this trace on the ideal consisting of
all operators with finite-dimensional range.

An example of a trace on the ideal of finite rank elements in a Banach algebra
A was provided by Puhl in [26]. Let A be a semiprime Banach algebra and let
0 6= u ∈ A be a rank one element. Puhl defined a trace tr(u) of u to be given by:

u2 = tr(u)u

(see [26], Section 2). It follows from the definition of rank one elements that
tr(u) = fu(1), and that tr(p) = 1 for every every rank one idempotent p.
If u ∈ SocA and u =

∑n
i=1 ui with all the ui rank one elements then

tr(u) :=
∑n

i=1 tr(ui) ([26], Definition 4.4) is well defined ([26], Section 4). It easily
follows from the properties of a general trace τ on an inessential ideal I that τ
coincides with Puhl’s trace on I ∩SocA. In fact, if a is a rank one element, then,
as we mentioned earlier, p = fa(1)−1a is a minimal idempotent. Consequently,
1 = τ(p) = fa(1)−1τ(a). Hence, τ(a) = fa(1) = tr(a). By the linearity of τ it
follows that τ(a) = tr(a) for all a ∈ SocA. Puhl also proves that his trace is
nilpotent on SocA, and hence by what we have shown, any trace restricted to
SocA is also nilpotent.

Finally, we remark that B. Aupetit and H. du T. Mouton in [2] also defined
a trace on SocA for A a semiprime Banach algebra, by putting

Tr(a) =
∑
λ∈σ(a)

m(λ, a)λ,
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where the number m(λ, a) turns out to be the algebraic multiplicity of λ for a.
This trace is of course nilpotent on SocA and it has the properties of an abstract
trace. It is therefore equal to the Puhl trace and consequently coincides with any
abstract trace defined on SocA.

As shown by the definition of Aupetit and Mouton, the trace on finite rank
elements is spectral, i.e., if λ1, · · ·, λn are the eigenvalues of a, each repeated
according to its algebraic multiplicity, then

τ(a) =
n∑
i=1

λi.

Since for every idempotent p ∈ SocA we have σ(p) ⊂ {0, 1}, we immediately see
that τ(p) ∈ N for every such p.

The fact that any abstract trace τ defined on I corresponds to the Puhl trace
on I ∩ SocA shows that τ can be extended to elements of SocA. It can thus be
extended to the ideal I + SocA. For this reason we will assume that if a trace is
defined on an ideal I, then I includes SocA.

2.2 Fredholm elements and index theory

We start off in a very general setting in which the assumptions on the trace are
minimal (in particular, we do not assume the trace ideal to be closed).

Let I be a proper ideal of a Banach algebra A and suppose that τ : I → C
is a trace defined on I. The following definition is a generalization of Definitions
F.2.5 and F.3.12 in [7] (pp. 31, 42).

Definition 2.2.1 ([10], Definition 3.1) Let A be a Banach algebra and let I be
an ideal in A. We call the element a ∈ A a Fredholm element relative to I if
there exists an element a0 ∈ A such that

1. aa0 − 1 ∈ I;

2. a0a− 1 ∈ I.

The set of all Fredholm elements relative to I is denoted by Φ(A, I).

Clearly, a ∈ Φ(A, I) if and only if ā = a+I is invertible in the quotient algebra
A/I. Also, A−1 ⊂ Φ(A, I) and Φ(A, I) is a multiplicative semi-group. Note that
since we do not assume I to be closed, A/I will not be a Banach algebra in
general. The next example motivates the definition (see Definition 2.2.3) of an
index via a trace.
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Example 2.2.2 ([10], Example 3.2) Let X be a Banach space and let T be a
Fredholm operator defined on X. The index of T, i(T ) is defined to be

i(T ) = dimN(T )− dimN(T ′) = α− β.

For a Fredholm operator T on X there exists an operator T0 on X such that

T0T = I − F1 and TT0 = I − F2

where F1 is a projection of X onto N(T ) and F2 the projection of X onto a
finite dimensional subspace X0 ⊂ X satisfying X = R(T ) ⊕X0 and dimX0 = β
([28], Theorem V.1.4). Since F1 has finite dimensional range, it is of the form∑α

i=1 x
′
i ⊗ xi, and since it is a projection, x′i(xj) = δij. It follows that its trace

τ(F1) satisfies τ(F1) = α. Similarly, τ(F2) = dim(X0) = β. Hence,

i(T ) = α− β = τ(F1 − F2) = τ(TT0 − T0T ).

Following the example, we define an index on Φ(A, I) with the aid of a trace
as follows.

Definition 2.2.3 ([10], Definition 3.3) Let A be a Banach algebra and let τ be
a trace on the ideal I in A. We define the index function ι : Φ(A, I)→ C by

ι(a) = τ(aa0 − a0a) for all a ∈ Φ(A, I)

where a0 ∈ A satisfies aa0 − 1 ∈ I and a0a− 1 ∈ I.

This definition was suggested by J.J. Grobler in [10]. Let a ∈ Φ(A, I). Suppose
there exist a0, a

′
0 ∈ A such that aa0−1 ∈ I, a0a−1 ∈ I and a′0a−1 ∈ I, aa′0−1 ∈ I.

We show that the value of the index function is independent of a0 (and a′0).

Proposition 2.2.4 ([10], Proposition 3.4) Let A be a Banach algebra and let I
be a trace ideal in A. The index function is well defined on Φ(A, I).

Proof. We note firstly that aa0−a0a = aa0−1−(a0a−1) ∈ I, and so τ(aa0−a0a)
exists. Next, let a′0 ∈ A also satisfy aa′0 − 1 ∈ I and a′0a− 1 ∈ I. Then we have
τ(aa′0−a′0a)−τ(aa0−a0a) = τ(a(a′0−a0)− (a′0−a0)a), and since a′0 ≡ a0 mod I,
both terms in the argument are in I. By the properties of a trace we therefore
get

τ(aa′0 − a′0a)− τ(aa0 − a0a) = τ(a(a′0 − a0))− τ((a′0 − a0)a) = 0

and so ι is well defined. 2

We note that the definition of Fredholm elements is symmetric. If a ∈ Φ(A, I)
and a0 satisfies a0a − 1 ∈ I and aa0 − 1 ∈ I then clearly a0 ∈ Φ(A, I) as well
and its index satisfies ι(a0) = −ι(a). Also, if a is invertible we can take a0 = a−1

and get ι(a) = 0. The following four results explore some of the properties of the
index function.
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Proposition 2.2.5 ([10], Proposition 3.5) Let A be a Banach algebra and I a
trace ideal in A. If a, b ∈ Φ(A, I), then ι(ab) = ι(a) + ι(b).

Proof. As observed above, if a, b ∈ Φ(A, I) then ab ∈ Φ(A, I). Let a0, b0 ∈ A and
satisfy aa0 − 1, a0a− 1 ∈ I and bb0 − 1, b0b− 1 ∈ I. It is easy to see that

(ab)(b0a0)− 1 ∈ I, (b0a0)(ab)− 1 ∈ I, b(b0a0)a− 1 ∈ I.

Therefore,

ι(ab) = τ((ab)(b0a0)− (b0a0)(ab))

= τ((ab)(b0a0)− b(b0a0)a) + τ(b(b0a0)a− (b0a0)(ab))

= τ(a(bb0a0)− (bb0a0)a) + τ(b(b0a0a)− (b0a0a)b) = ι(a) + ι(b)

2

Proposition 2.2.6 ([10], Proposition 3.7) Let A be a Banach algebra and let I
be a trace ideal in A. If a ∈ Φ(A, I) then the following holds:

(i) For every q ∈ I we have ι(a+ q) = ι(a).

(ii) For every 0 6= λ ∈ C we have λa ∈ Φ(A, I) and ι(λa) = ι(a).

(iii) For every 0 6= λ ∈ C and every q ∈ I we have ι(λ− q) = 0.

(iv) The set Φ(A, I) is open in A.

(v) The index function ι is constant on every component of Φ(A, I).

(vi) The index function ι : Φ(A, I)→ C is continuous.

Proof.

(i) With a0 as before and for q ∈ I we have (a+ q)a0− 1 = (aa0− 1) + qa0 ∈ I
and likewise a0(a+ q)− 1 ∈ I. Hence, a+ q ∈ Φ(A, I) and

ι(a+ q) = τ((a+ q)a0 − a0(a+ q)) = τ(aa0 − a0a) + τ(qa0 − a0q) = ι(a).

(ii) For λ 6= 0 we have (λa)(λ−1a0)− 1 ∈ I and (λ−1a0)(λa)− 1 ∈ I. It follows
immediately that ι(λa) = ι(a).

(iii) This follows immediately from (i) and (ii) since ι(1) = 0.
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(iv) Let a ∈ Φ(A, I) and let aa0−1 = p ∈ I and a0a−1 = q ∈ I. Let b ∈ A satisfy
||a−b|| < ||a0||−1. It follows from ba0 = 1+p−(a−b)a0 = p+(1−(a−b)a0),
and the fact that u := 1−(a−b)a0 is invertible, that ba0u

−1−1 = pu−1 ∈ I.
Similarly, we get v−1a0b − 1 = v−1q ∈ I where v := 1 − a0(a − b). By the
series expansion for u−1 and v−1 we find that a0u

−1 = v−1a0 and this shows
by definition that b ∈ Φ(A, I). Hence, Φ(A, I) is open.

(v) Using the argument and notation in (iv) we find that for all b in a neigh-
bourhood of a that bb0 − 1 ∈ I and b0b− 1 ∈ I with b0 = a0u

−1. It follows
that

ι(b) = −ι(b0) = −ι(a0)− ι(u−1) = −ι(a0) = ι(a)

(vi) This follows immediately from (iv) and (v).

2

To continue the development of the theory of an index via a trace, we make
use of Barnes idempotents and annihilators as described below:

Definition 2.2.7 ([10], Definition 3.9) Let A be a Banach algebra and a ∈ A.
An idempotent p is called a left Barnes idempotent for a ∈ A if

aA = (1− p)A (2.1)

Similarly, q is called a right Barnes idempotent for a if:

Aa = A(1− q) (2.2)

Also, for a ∈ A we define the right and left annihilators respectively of a as the
sets:

Nr(a) := {x ∈ A : ax = 0}, N`(a) := {x ∈ A : xa = 0}

We shall illustrate that a Barnes idempotent belonging to a ∈ A need not be
unique. We note the following facts from [10].

Proposition 2.2.8 ([10], Proposition 3.10) Let A be a unital Banach algebra,
a ∈ A. If p is a left Barnes idempotent for a then Ap = N`(a), and in particular,
p ∈ N`(a). Similarly, if q is a right Barnes idempotent for a ∈ A then qA = Nr(a)
and so q ∈ Nr(a).

Proof. Let p be a left Barnes idempotent for a. By (2.1) there exists some b ∈ A
such that a = (1 − p)b. Hence, pa = p(1 − p)b = 0 and so p ∈ N`(a). It follows
that Ap ⊂ N`(a). On the other hand, again by (2.1) we have 1− p = ab for some
b ∈ A. So, if x ∈ N`(a), we have x(1 − p) = xab = 0. Thus, x = xp ∈ Ap. This
establishes Ap = N`(a). 2
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Theorem 2.2.9 ([10], Theorem 2.2.12) Let A be a semisimple unital Banach
algebra and let the trace ideal I satisfy SocA ⊂ I ⊂ kh(SocA). Then

(i) a ∈ Φ(A, I) if and only if there exist left and right Barnes idempotents p
and q, respectively, in SocA and an element a0 ∈ A such that

aa0 = 1− p and a0a = 1− q. (2.3)

(ii) ι(a) ∈ Z.

Proof.

(i) Since A is a semisimple unital Banach algebra it follows that SocA is non-
trivial. As we remarked earlier, we may assume that the trace ideal I
contains SocA. Since an element a is invertible modulo SocA if and only
if it is invertible modulo kh(SocA) (see [7], Theorem BA.2.4, p 103 or [1],
Theorem 5.7.2), we have Φ(A, I) = Φ(A, SocA). It then follows from [7],
Theorem F.1.10 that a ∈ Φ(A, I) if and only if there exist left and right
Barnes idempotents in the socle for a. Let p ∈ SocA ⊂ I be a left Barnes
idempotent for a; then there exist by (2.1) an element a0 ∈ A such that
aa0 = 1 − p and also an element b ∈ A such that a = (1 − p)b. The latter
relation implies that (1− p)a = a. Hence, a0a is an idempotent, because

(a0a)2 = a0(aa0)a = a0(1− p)a = a0a. (2.4)

Let q := 1− a0a. Since a ∈ Φ(A, I) and the equivalence class containing a0

is a right inverse of a modulo I = SocA, it is also a left inverse of a modulo
I. It follows that q ∈ I = SocA and aq = a(1− q). The two equalities

1− q = a0a and a = a(1− q)

together imply that Aa = A(1 − q) and so q is a right Barnes idempotent
for a. Hence, (i) holds.

(ii) This follows immediately from (2.3) because

ι(a) = τ(aa0 − a0a) = τ(1− p− (1− q)) = τ(q − p) = τ(q)− τ(p).

But, as remarked earlier, τ is a spectral trace on SocA and consequently
τ(p), τ(q) ∈ N. Thus, ι(a) ∈ Z.

2

We call the Barnes idempotents p and q in Theorem 2.2.9 associated Barnes
idempotents.
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Corollary 2.2.10 ([10], Corollary 3.13) Let A be a semisimple Banach algebra
and let the trace ideal I satisfy SocA ⊂ I ⊂ kh SocA. If a ∈ Φ(A, I), then there
exist associated Barnes idempotents p and q with ι(a) = τ(q)− τ(p).

Next, we show that the traces of all left (respectively right) Barnes idempo-
tents for a given element a ∈ A are equal.

Theorem 2.2.11 ([10], Theorem 3.14) Let A be a semisimple Banach algebra
and let the trace ideal I in A satisfy SocA ⊂ I ⊂ kh SocA. Let p and q be respec-
tively left and right Barnes idempotents of the Fredholm element a ∈ A. Then
τ(p) is equal to the cardinality of a maximal set of orthogonal minimal idempo-
tents in N`(a) = Ap. Similarly, τ(q) is equal to the cardinality of a maximal set
of orthogonal minimal idempotents in Nr(a) = qA.

Proof. Since N` = N`(a) = Ap is a left ideal contained in the socle of A, we
deduce by [7], Lemma F.1.7 that every orthogonal subset of minimal subsets of
N` is finite. Let {e1, ..., ek} be a maximal subset of minimal idempotents. Then
N` =

∑k
i=1 Aei, and we can write:

p = x1e1 + · · ·+ xkek.

Again, by [7], Lemma F.1.7, p̄ = e1 + · · · + ek is an idempotent in N`(a) and
N`(a) = Ap̄. Note now that pp̄ = p. We then have

aa0 = (1− p̄)aa0 = (1− p̄)(1− p) = 1− p̄− p+ p̄p

and it follows from the commutative property of the trace that

τ(p) = τ(1− aa0) = τ(p̄+ p− p̄p) = τ(p̄) + τ(p)− τ(p̄p)

= τ(p̄) + τ(p)− τ(p) = τ(e1) + · · ·+ τ(ek) = k.

The proof for a right Barnes idempotent is similar. 2

Remark 2.2.12 We note two interesting facts which follow from the proof. In
the first place, since the ei are minimal idempotents, we have eixiei = λiei for
some λi ∈ C. So by the commutativity of the trace,

τ(p) =
k∑
i=1

τ(xiei) =
k∑
i=1

τ(eixiei) =
k∑
i=1

τ(λiei) =
k∑
i=1

λi

Secondly, for every left Barnes idempotent p for a, we see that p + p̄ − p̄p (with
the notation of the proof) is again a left Barnes idempotent for a. Similarly, if q
is the right Barnes idempotent for a associated with p, then q+ q̄− qq̄ is again a
right Barnes idempotent for a and it is associated with p+ p̄− p̄p.
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Corollary 2.2.13 ([10], Corollary 3.15) Suppose A is a semisimple Banach al-
gebra and suppose the trace ideal I satisfies SocA ⊂ I ⊂ kh SocA. If a ∈ Φ(A, I)
with left Barnes idempotent p and right Barnes idempotent q, then τ(p) = rank(p)
and τ(q) = rank(q).

Proof. This follows immediately from [2], Corollary 2.18. 2

The fact that for any left Barnes idempotent p for a ∈ Φ(A, I) the number
τ(p) is uniquely defined, even though the Barnes idempotent is not, enables us
to define the nullity and deficiency of an element a ∈ Φ(A, I) as follows.

Definition 2.2.14 ([10], Definition 3.16) The nullity n(a) and deficiency d(a)
of a ∈ Φ(A, I) are defined as

n(a) := τ(q) and d(a) := τ(p)

where q is a right Barnes idempotent and p is a left Barnes idempotent of a.

We have

Theorem 2.2.15 ([10], Theorem 3.17) Let A be a unital Banach algebra and let
the trace ideal I satisfy SocA ⊂ I ⊂ kh SocA. Then for every a ∈ Φ(A, I) we
have

ι(a) = n(a)− d(a)

and

A−1 = {a ∈ Φ(A, I) : n(a) = d(a) = 0}

Proof. If a ∈ A is invertible, then 0 is a left as well as a right Barnes idempotent
for a and so n(a) = d(a) = 0. On the other hand, τ(p) ≥ 1 for every nonzero left
Barnes idempotent of a. If, therefore, the condition n(a) = d(a) = 0 holds, we
see that a has a right and left inverse and hence a ∈ A−1. 2

Let X and Y be Banach spaces and let B : X → Y and A : Y → X be
bounded linear operators. There is a classical result that if I−AB is a Fredholm
operator, then ι(I − AB) = ι(I − BA), see ([4], Theorem 6). We prove the
analogue of this result in general.

Theorem 2.2.16 ([10], Theorem 3.20) Let A be a semisimple Banach algebra
and let I be a closed trace ideal such that SocA ⊂ I ⊂ kh SocA. If a, b ∈ A with
1− ab ∈ Φ(A, I) then ι(1− ab) = ι(1− ba).
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Proof. Let p, q be respectively right and left Barnes idempotents of 1−ab ∈ Φ(A, I)
such that ι(1− ab) = τ(q)− τ(p) (see Corollary 2.2.10). From the definition of a
right Barnes idempotent there exists an element x ∈ A such that

(1− ab)x = 1− p and x(1− ab) = 1− q (2.5)

If x0 = bxa+ 1 then, using (2.5), we get

(1− ba)x0 = bxa+ 1− b(abx)a− ba
= bxa+ 1− b(x− 1 + p)a− ba = 1− bpa,

(2.6)

x0(1− ba) = bxa− b(xab)a+ 1− ba
= bxa− b(x− 1 + q)a+ 1− ba = 1− bqa,

(2.7)

This shows that 1− ba ∈ Φ(A, I) and applying (2.5) - (2.7), we have

ι(1− ba) = τ((1− ba)x0 − x0(1− ba))

= τ(1− bpa− (1− bqa))

= τ(bqa)− τ(bpa) (by TA).

But

τ(bqa) = τ(abq) = τ(abq − q + q)

= τ((ab− 1)q + q) = τ(q),

since q ∈ Nr(1−ab), and similarly, because p ∈ N`(1−ab) we have τ(bpa) = τ(p).
It follows that ι(1− ba) = τ(q)− τ(p) = ι(1− ab). 2

Note that if 0 6= λ ∈ C is such that λ−ab ∈ Φ(A, I) then ι(λ−ab) = ι(λ−ba)
because

ι(λ− ab) = ι(λ(1− 1

λ
ab))

= ι(λ(1− ab

λ
))

= ι(λ(1− ba

λ
))

= ι(λ− ba),

see Proposition 2.2.5.
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2.3 Another index function

In [16], H. Kraljević, S. Suljagić and K. Veselić also defined an index function
for Fredholm elements in a semisimple Banach algebra. Their construction is
briefly as follows: Let Γ be the set of similarity classes of minimal idempotents
in SocA. The authors then proved that SocA =

∑
γ∈Γ Aγ, where Aγ is the two-

sided ideal generated by p ∈ γ ∈ Γ, and the sum is an algebraic direct sum ([16],
Theorem 2.12). So, for every a ∈ SocA there exists a finite set Γa ⊂ Γ such that
a =

∑
γ∈Γa

aγ. If we put aγ = 0 if γ ∈ Γ \ Γa, we have a =
∑

γ∈Γ aγ. Let p and q
be left and right Barnes idempotents of a respectively and suppose that

p =
∑
γ∈Γ

pγ q =
∑
γ∈Γ

qγ.

Let a ∈ Φ(A, SocA). The authors above defined their index function as follows:

Indγ(a) = (Indγ(a))γ∈Γ ∈ ZΓ

where Indγ(a) = rank(qγ) − rank(pγ) = τ(qγ) − τ(pγ). It is clear from Lemma
3.18 in [10] that

ι(a) = τ(q)− τ(p) =
∑
γ∈Γ

(τ(qγ)− τ(pγ)) =
∑
γ∈Γ

Indγ(a).

A disadvantage of this index function is that the index of a Fredholm element
is a sequence. Also, one first has to find Barnes idempotents in order to define
Indγ. An advantage of the index function Ind(a) ∈ ZΓ is that it is not difficult
to prove that if Ind(a) = 0, a ∈ Φ(A, SocA), then a = b + c with b ∈ A−1 and
c ∈ SocA, see [10], Theorem 3.19.

2.4 Index zero Fredholm elements

In [10] the authors defined an index function for Fredholm elements relative to a
trace ideal, and they developed the basic properties of this index function. One
fact that eluded them was to show that an index zero Fredholm element can be
written as a sum of an invertible and socle element. This section describes how
to prove this.

New results in this section are Theorems 2.3.4 and 2.3.6. Their proofs show
similarities with the proof of Theorem 3.19 in [10].

Let A be a semisimple Banach algebra and let I be a closed trace ideal with
SocA ⊂ I ⊂ kh SocA. We denote the set of index zero Fredholm elements by
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Φ0(A, I). Note that with the aid of the index function ι we can decompose the
set Φ(A, I) of Fredholm elements into equivalence classes as follows:

Φ(A, I) =
∞⋃

n=−∞

ι−1(n),

where ι−1(0) = Φ0(A, I).

Theorem 2.4.1 ([12], Theorem 3.1) Let A be a semisimple Banach algebra and
let I be a trace ideal in A satisfying SocA ⊂ I ⊂ kh SocA. Let a ∈ Φ(A, I) and
p and q be left and right Barnes idempotents for a respectively. If p and q are
similar, then a = x+ y with x ∈ A−1 and y ∈ SocA.

Proof. Let a ∈ Φ(A, I). Since p and q are Barnes idempotents for a there exist
a0 ∈ A such that aa0 = 1 − p and a0a = 1 − q ([10], Theorem 3.11). If p and
q are similar then there exists u ∈ A−1 with up = qu. Put ū = up = qu and
v̄ = pu−1 = u−1q. Then v̄ū = p and ūv̄ = q. In view of [10], Proposition 3.10,
ū ∈ N`(a) ∩ Nr(a) and v̄ ∈ N`(a0) ∩ Nr(a0). If we combine these arguments it
follows that

(a+ v̄)(a0 + ū) = 1− p+ p = 1 and (a0 + ū)(a+ v̄) = 1− q + q = 1.

Then a = (a+ v̄)− v̄ with a+ v̄ ∈ A−1 and v̄ = pu−1 ∈ SocA, since SocA is an
ideal and p ∈ SocA. This completes the proof. 2

Corollary 2.4.2 ([12], Corollary 3.2) Under the assumption of the theorem if
a ∈ Φ(A, I) is such that it has similar associated Barnes idempotents, then a ∈
Φ0(A, I).

Proof. Let a = x+ y ∈ A−1 + SocA. Then

ι(a) = ι(x+ y) = ι(x) = 0

2

Note that in the above Theorem if ‖aa0 − a0a‖ < 1, then ‖p− q‖ < 1 and so
in view of a result of Zemánek ([2], Lemma 2.5) p and q are similar.

Let I be a closed ideal in a Banach algebra A. We will say that x ∈ A is Weyl
with respect to I if x = a + b with a ∈ A−1 and b ∈ I. Denote the collection of
Weyl elements in A relative to I by W(A, I). We also define a spectrum relative
to W(A, I) as

σW(A,I)(a) = {λ ∈ C : λ− a /∈ W(A, I)} for all a ∈ A.
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Corollary 2.4.3 ([12], Corollary 3.3) Let I be a closed trace ideal in a semisim-
ple Banach algebra A such that SocA ⊂ I ⊂ kh SocA. ThenW(A, I) ⊂ Φ0(A, I).

Our aim is to reverse these inclusions. This brings us to our main theorem.
The main tool used in the proof of this theorem is the Sinclair version of Jacob-
son’s density theorem, see (Chapter 1).

Theorem 2.4.4 ([12], Theorem 3.4) Let A be a semisimple Banach algebra and
let I be a trace ideal in A with SocA ⊂ I ⊂ kh SocA. If a ∈ Φ(A, I) with ι(a) = 0,
then a = x+ y with x ∈ A−1 and y ∈ SocA, that is, Φ0(A, I) = A−1 + SocA.

Proof. Let a ∈ Φ(A, I) with ι(a) = 0. By [10], Corollary 3.13, Theorem 3.14,
ι(a) = τ(p) − τ(q) where τ(q) is equal to the cardinality of a maximal set of
orthogonal minimal idempotents in N`(a) = Ap and similarly, τ(q) is equal to the
cardinality of a maximal set of minimal idempotents in Nr(a) = qA. Let k be the
common cardinality and let {e1, e2, ..., ek} be a maximal set of orthogonal minimal
idempotents in N`(a). Then N`(a) =

∑k
1 Aei and we can write p = x1e1 + x2e2 +

...+xkek. Likewise, let {f1, f2, ..., fk} be a maximal subset of orthogonal minimal
idempotents in Nr(a). Again, Nr(a) = fiA and we can write q = f1y1 + f2y2 +
...+fkyk. Since the sets {x1e1, x2e2, ..., xkek} and {f1y1, f2y2, ..., fkyk} are linearly
independent, the Sinclair version of the Jacobson’s density theorem (Corollary
1.6.2) implies that there exists an element u ∈ A−1 such that uxiei = fiyi for
i = 1, ..., k and consequently, up = q.
Put ū = up = q and v̄ = p = u−1q. Then ūv̄ = up2 = up = q and v̄ū = u−1q2 =
u−1q = p. In view of [10], Proposition 3.10 we have ū ∈ N`(a) ∩ Nr(a) and
v̄ ∈ N`(a0) ∩Nr(a0). It follows that

(a+ v̄)(a0 + ū) = 1− p+ p = 1 and (a0 + ū)(a+ v̄) = 1− q + q = 1

Hence, a = a+ v̄ − v̄ with a+ v̄ ∈ A−1 and v̄ = p ∈ SocA.
This completes the proof. 2

Corollary 2.4.5 ([12], Corollary 3.5) Let I be a closed trace ideal in a semisimple
Banach algebra A such that SocA ⊂ I ⊂ kh SocA. Then W(A, I) = Φ0(A, I).

We now link our result to spectral theory.

Theorem 2.4.6 ([12], Theorem 3.6) Let I be a closed trace ideal in a semisimple
Banach algebra A such that SocA ⊂ I ⊂ kh SocA. Then W(A, I) = Φ0(A, I) is
an upper semiregularity with the Jacobson property.

Proof. Since Φ0(A, I) is an open semigroup containing 1 (see [10], Proposition
3.5, Proposition 3.7), it is an upper semiregularity (Lemma 1.5.4). Let 0 6= λ ∈ C
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and a, b ∈ A with λ−ab ∈ Φ0(A, I). By Theorem 2.2.16, we have 0 = ι(λ−ab) =
ι(λ − ba) and so λ − ba ∈ Φ0(A, I). The converse follows by symmetry and we
are done. 2

We are now able to characterize the Weyl spectrum in terms of the index.

Corollary 2.4.7 ([12], Corollary 3.7) Let I be a closed trace ideal in a semisim-
ple Banach algebra A such that SocA ⊂ I ⊂ kh SocA. Then, for every a ∈ A

σW(A,I)(a) = {λ ∈ C : λ− a is not Fredholm or ι(λ− a) 6= 0}.
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Chapter 3

Regularities and semiregularities

3.1 Introduction

In this chapter we are going to compare regularities (semiregularities) S and R
that satisfy S ⊂ R. In this case the spectra satisfy σR(a) ⊂ σS(a) for all a ∈ A.
For such spectra we will be interested in the case ∂σS(a) ⊂ σR(a) ⊂ σS(a) for
all a ∈ A. In many cases in the literature [1, 11, 17, 20, 21, 24] this condition
was verified separately for many regularities (semiregularities). We are going to
follow a simple uniform approach to prove this condition between the regularities
(semiregularities) R and S that would guarantee ∂σS(a) ⊂ σR(a) ⊂ σS(a) for all
a ∈ A. If we let B = A in ([17], Theorem 3.1) we get:

Theorem 3.1.1 Let A be a Banach algebra and let R and S be regularities
(semiregularities) in A such that S ⊂ R. Then:

1. σR(a) ⊂ σS(a) for all a ∈ A.

2. If ∂S ∩ R = ∅ then ∂σS(a) ⊂ σR(a) ⊂ σS(a) for all a ∈ A provided that
σS(a) 6= ∅.

Proof.

1. Let a ∈ A. If λ /∈ σS(a) then a− λ ∈ S ⊂ R, so λ /∈ σR(a).

2. Let a ∈ A and λ ∈ ∂σS(a). Then there is a sequence (λn) in C \ σS(a) such
that λn → λ and a sequence (µn) in σS(a) such that µn → λ. Then (a−λn)
is a sequence in S such that a − λn → a − λ and (a − µn) is a sequence
in A \ S such that a − µn → a − λ. Consequently, a − λ ∈ ∂S and since
∂S ∩R = ∅ it follows that a− λ /∈ R and so λ ∈ σR(a).

2

Note that in Theorem 3.1.1, the statement will hold for more general R, see
Proposition 3.1.8.
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As a first step we let S be equal to the regularity A−1 and compare A−1 with
other regularities (semiregularities). We need the following notion:

Definition 3.1.2 ([24], p. 57) Let R be a regularity in a Banach algebra A with
σR the corresponding spectrum. We say that σR is spectral radius preserving if
σR(a) is closed and

sup{|λ| : λ ∈ σR(a)} = sup{|λ| : λ ∈ σ(a)} for all a ∈ A.

Müller then proved:

Theorem 3.1.3 ([24], Theorem 1.6.13) Let R be a regularity in a Banach algebra
A such that the corresponding spectrum σR is spectral radius preserving. Then
∂σ(a) ⊂ σR(a) ⊂ σ(a) for all a ∈ A.

If we compare a regularity R in a Banach algebra A with the regularity A−1

and ∂σ(a) ⊂ σR(a) ⊂ σ(a) for all a ∈ A, then the spectrum σR is spectral radius
preserving. We now exhibit regularities R for which ∂A−1 ∩ R = ∅. Let A be a
Banach algebra and let:

1. R1 = A;

2. R2 = A−1;

3. R3 = A−1
l ;

4. R4 = A−1
r ;

5. R5 = {x ∈ A : x is not a left topological zero divisor};

6. R6 = {x ∈ A : x is not a right topological zero divisor}.

The sets Ri (i = 1, 2, ..., 6) are examples of regularities since they satisfy the P1
condition, see Theorem 1.5.6.

Proposition 3.1.4 Let A be a Banach algebra and let R = R3 or R = R4. Then
∂σ(a) ⊂ σR(a) ⊂ σ(a) for all a ∈ A.

Proof. We prove the statement for R = R3. The proof for R = R4 is similar and
is omitted. Suppose that a ∈ ∂A−1. By ([24], Theorem 1.1.14), a is a topolog-
ical divisor of zero, and from the same theorem it follows that a /∈ R. Hence,
∂A−1 ∩ R = ∅. In view of Theorem 3.1.1 it follows that ∂σ(a) ⊂ σR(a) ⊂ σ(a)
for all a ∈ A. 2

Corollary 3.1.5 If A is a Banach algebra then the regularities R3 and R4 are
spectral radius preserving.
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Proof. Since Ri (i = 3, 4) are open subsets in A, see ([9], Theorem 2.1.3) it fol-
lows from ([24], Proposition 1.6.9) that σRi

(a) is closed for every a ∈ A. The
statement now follows from the proposition above. 2

Proposition 3.1.6 Let A be a Banach algebra and let R = R5 or R = R6. Then
∂σ(a) ⊂ σR(a) ⊂ σ(a) for all a ∈ A.

Proof. We prove the statement for R = R5. The proof for R = R6 is similar and
is omitted. Suppose that a ∈ ∂A−1. By ([24], Theorem 1.1.14), a is a topolog-
ical divisor of zero, and from the same theorem it follows that a /∈ R. Hence,
∂A−1 ∩ R = ∅. In view of Theorem 3.1.1 it follows that ∂σ(a) ⊂ σR(a) ⊂ σ(a)
for all a ∈ A. 2

For a different proof of this fact, see [14].

Corollary 3.1.7 If A is a Banach algebra then the regularities R5 and R6 are
spectral radius preserving.

Proof. Since Ri (i = 5, 6) are open sets in A, see ([9], Theorem 2.4.3), it follows
from ([24], Proposition 1.6.9), that σRi

(a) is closed for every a ∈ A. The state-
ment now follows from the proposition above. 2

Next we investigate a set R in a Banach algebra A which is neither an upper
semiregularity nor a lower semiregularity but the spectrum σR is spectral radius
preserving. In [21], the author defines the boundary spectrum of an element in a
Banach algebra as follows: Let S be the set of noninvertible elements in a Banach
algebra A. The set

S∂(a,A) = {λ ∈ C : λ− a ∈ ∂S}

is called the boundary spectrum of a ∈ A. To work with this spectrum in our
context let R = A \ ∂A−1. Then R is an open set in A with A−1 ⊂ R and
σR(a), a ∈ A, is the boundary spectrum of a. The reason for this is that in
a topological space a set and its complement has the same boundary. So, if
S = A \ A−1, then ∂A−1 = ∂S.

Proposition 3.1.8 Let A be a Banach algebra and let R = A \ ∂A−1. Then
∂σ(a) ⊂ σR(a) ⊂ σ(a) for all a ∈ A.

Proof. Since A−1 ⊂ R, σR(a) ⊂ σ(a) for every a ∈ A. Also, since ∂A−1 ∩ (A \
∂A−1) = ∅ it follows from Theorem 3.1.1 that ∂σ(a) ⊂ σR(a) ⊂ σ(a) for all
a ∈ A. 2

For a different proof of this fact, see ([21], Proposition 2.1).
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Corollary 3.1.9 Let A be a Banach algebra and let R = A \ ∂A−1. Then the
boundary spectrum σR is spectral radius preserving.

Proof. Since R is open, σR is closed. By Proposition 3.1.8 above, σR is spectral
radius preserving. 2

We illustrate next that if A is a Banach algebra and R = A \ ∂A−1, that in
general R is neither an upper semiregularity nor a lower semiregularity.

Example 3.1.10 Let A be the real Banach algebra C([−1, 1]) of real valued
continuous functions defined on [−1, 1] with the supremum norm and R = A \
∂A−1. Let f(x) = x, for x ∈ [−1, 1]. Then f ∈ R, but f 2 /∈ R. Hence R is not
an upper semiregularity.

Next, we use the previous example to construct a complex Banach algebra in
which the given set is not an upper semiregularity.

Example 3.1.11 Let A be as in Example 3.1.10 and let AC be the complexi-
fication of A. Let RC = AC \ ∂A−1

C . As in Example 3.1.10, let f(x) = x for
x ∈ [−1, 1] and R = A \ ∂A−1. Then f ∈ R, hence there exists a neighbourhood,
N , of f that contains no elements from A−1. First we note that (f, f) /∈ A−1

C .
Suppose this is not the case, i.e. suppose that (f, f) ∈ A−1

C . Then there is
(g, h) ∈ AC such that (f, f) · (g, h) = (1, 0). Then fg − fh = 1 and fg + fh = 0.
This yields f · (2g) = 1 which contradicts f /∈ A−1. Hence (f, f) /∈ A−1

C , and
0 ∈ σA−1

C
((f, f)). Next, we show that the neighbourhood N ×N contains no ele-

ments fromA−1
C . Suppose (g, h) ∈ A−1

C and (g, h) ∈ N×N . Then 0 /∈ σA−1
C

((g, h)).
Since AC is a commutative Banach algebra the spectrum function is uniformly
continuous. In particular, it is continuous at (f, f). Let K1 = σA−1

C
((f, f)) and

K2 = σA−1
C

((g, h)). Then ∆(K1, K2) = max

(
sup
z∈K2

dist(z,K1), sup
z∈K1

dist(z,K2)

)
denotes the Hausdorff distance between K1 and K2. Since 0 /∈ K2 and 0 ∈ K1,
∆(K1, K2) = ε for some ε > 0. Since the spectrum function is continuous at
(f, f), there is δ > 0 such that if ||(g, h)− (f, f)|| < δ then ∆(K1, K2) < ε

2
. This

contradicts 0 /∈ σA−1
C

((g, h)), and so (f, f) ∈ RC. Finally, (f, f)2 = (0, 2f 2) /∈ RC

because σA−1
C

((0, 2f 2)) = {ix : 0 ≤ x ≤ 2}. This proves that RC is not an upper
semiregularity in AC.

Example 3.1.12 Let A be the real Banach algebra C([0, 1]) of real valued con-
tinuous functions defined on [0, 1] with the supremum norm and R = A \ ∂A−1.
For x ∈ [0, 1], let

f(x) =


−3x+

3

2
if x ∈ [0, 1

2
)

3x− 3

2
if x ∈ [1

2
, 1]
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and

g(x) = 1− f(x)

=


3x− 1

2
if x ∈ [0, 1

2
)

−3x+
5

2
if x ∈ [1

2
, 1]

Note that if s(x) = t(x) = 1, then

f · s+ g · t = 1.

Also,

f · g(x) =


−9x2 + 6x− 3

4
if x ∈ [0, 1

2
)

−9x2 + 12x− 15

4
if x ∈ [1

2
, 1]

Then f · g ∈ R, but f /∈ R and g ∈ R. By definition, R is not a lower
semiregularity.

At this point Example 3.1.12 is the best we can do in terms of proving that
the set R = A \ ∂A−1 is in general not a lower semiregularity. The search for a
counterexample in a complex Banach algebra will continue. See also [22], section
4.

Proposition 3.1.13 Let A be a Banach algebra and let R = A−1
l ∪ A−1

r . Then
R is an open lower semiregularity.

Proof. We use Lemma 1.5.2, to prove this as follows. Since 1A ∈ R, we know that
R 6= ∅. Next, let a, b ∈ R, and ab = ba. Suppose that ab ∈ R and suppose that
ab ∈ A−1

l . Then there is c ∈ A such that c(ab) = 1A. hence (ca)b = 1A, hence
b ∈ R. Similarly, using ab = ba, we have a ∈ R. Both A−1

l and A−1
r are open,

hence R is open. 2

Proposition 3.1.14 Let A be a Banach algebra and let R = A−1
l ∪ A−1

r . Then
∂σ(a) ⊂ σR(a) ⊂ σ(a) for all a ∈ A.

Proof. From Proposition 3.1.4 we know that ∂A−1∩A−1
l = ∅ and ∂A−1∩A−1

r = ∅.
Hence ∂A−1 ∩R = (∂A−1 ∩A−1

l ) ∪ (∂A−1 ∩A−1
r ) = ∅. Using Theorem 3.1.1, the

result follows. 2
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Corollary 3.1.15 Let A be a Banach algebra and let R = A−1
l ∪ A−1

r . Then σR
is spectral radius preserving.

Proof. Since R is an open lower semiregularity we know from [24], Proposition
1.6.9 that σR(a) is closed for all a ∈ A. Using Proposition 3.1.14 the result fol-
lows. 2

We are going to give an example of an upper semiregularity R such that
∂A−1 ∩R 6= ∅ and σR is not spectral radius preserving.

Proposition 3.1.16 Let A be a Banach algebra and let R = A−1 ∪ ∂A−1. Then
R is an upper semiregularity.

Proof. Note that R = A−1. [In a topological space the closure of a set is the union
of the set with its boundary]. Since 1A ∈ A−1 ⊂ R, R contains a neighbourhood
of 1A. Let a, b ∈ R. Then there are sequences (an) and (bn) in A−1 such that
an → a and bn → b. Hence, anbn → ab with (anbn) a sequence in A−1. Conse-
quently, ab ∈ R. 2

For a related result, see ([21], Lemma 2.6).

Proposition 3.1.17 Let A be a Banach algebra and let R = A−1 ∪ ∂A−1. Then
σR(a) ⊂ σ(a) and ∂σ(a) ∩ σR(a) = ∅ for all a ∈ A.

Proof. Since A−1 ⊂ R, we have that σR(a) ⊂ σ(a) for all a ∈ A. Note that
∂A−1∩R 6= ∅. If a ∈ A and λ ∈ ∂σ(a), then λ−a ∈ ∂A−1 ⊂ R and so λ /∈ σR(a).
This completes the proof. 2

Corollary 3.1.18 Let A be a Banach algebra and let R = A−1 ∪ ∂A−1. Then
the spectrum σR is not spectral radius preserving.

Proof. The result follows from Proposition 3.1.17 above. 2

3.2 ExpA

Let A be a Banach algebra. We define the generalized exponentials, ExpA by

ExpA = {ec1 · · · eck : k ∈ N, c1, ..., ck ∈ A}.

It can be shown ([14] and [1], Theorem 3.3.7) that ExpA forms the connected
component of A−1 containing 1. Furthermore, ExpA is an open subset of A and
a closed normal subgroup of A−1:

a ∈ A−1 =⇒ a−1 · ExpA · a = ExpA.
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If R = ExpA, then the spectrum σR defined by

σR(a) = {σ ∈ C : λ− a /∈ R},

is known in the literature as the exponential spectrum of a ∈ A, see [14]. In this
section we are going to compare the exponential spectrum σR with the ordinary
spectrum.

Proposition 3.2.1 Let A be a Banach algebra and let R = ExpA. Then R is
an upper semiregularity.

Proof. We prove this fact by proving that ExpA is an open semigroup that con-
tains the identity element (Lemma 1.5.4). From ([1], Theorem 3.3.7), we know
that ExpA is the component of A−1 that contains 1. Since its a component of A−1

it is closed in A−1. By the same theorem, we know that ExpA is also open in A−1.
So there must be U , open in A such that ExpA = U∩A−1. We also know that A−1

is open, hence ExpA is open. What remains is to show that ExpA is closed with
respect to the binary operation of the algebra. Suppose that a1, a2 ∈ ExpA and
that a1 = ex1 · · ·exn , a2 = ey1 · · ·eym . Then a1a2 = ex1 · · ·exney1 · · ·eym ∈ ExpA. 2

Theorem 3.2.2 Let A be a Banach algebra and let R = ExpA. Then ∂σR(a) ⊂
σ(a) ⊂ σR(a) for all a ∈ A.

Proof. Since R ⊂ A−1, σ(a) ⊂ σR(a) for all a ∈ A. We claim that ∂R ∩A−1 = ∅:
Let a ∈ ∂ExpA. So every neighbourhood of a contains points of ExpA as well as
points of A\ExpA. Either a ∈ A−1 or a /∈ A−1. If a /∈ A−1 then ∂ExpA∩A−1 = ∅
as required. Alternatively, suppose that a ∈ A−1. Then a belongs to a compo-
nent of A−1. If a ∈ ExpA, then ExpA is a neighbourhood of a because ExpA is
open in A−1. But then this neighbourhood avoids A \ ExpA, hence contradicts
a ∈ ∂ExpA. So next, suppose that a ∈ U , where U is any other component
of A−1. Then again, U is open in A−1, hence a neighbourhood of a. Since
components are disjoint, we have that U ∩ ExpA = ∅, which again contradicts
a ∈ ∂ExpA. Hence ∂ExpA∩A−1 = ∅ and in view of Theorem 3.1.1 we are done.
2

For a different proof of this fact see ([14], Theorem 1). To compare the upper
semiregularity R = ExpA with the regularity A−1 we need to generalize the
notion of spectral radius preserving as follows.

Definition 3.2.3 Let R and S be regularities (semiregularities) such that R ⊂ S
and let σR and σS be the corresponding spectra. We will say that the spectrum
σS is R - radius preserving if σS is closed and sup{|λ| | λ ∈ σS(a)} = sup{|λ| :
λ ∈ σR(a)} for all a ∈ A.
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Corollary 3.2.4 Let A be a Banach algebra and let R = ExpA. Then the usual
spectrum σ is R - radius preserving.

Proof. It is well known that the usual spectrum, σ(a) is a closed set for all a ∈ A.
It follows from Theorem 3.2.2 above that the spectrum σ is R - radius preserving.
2

3.3 expA

Let A be a Banach algebra and a ∈ A. We define the set expA by

expA = {ex : x ∈ A}.

If R = expA, then we will denote the spectrum σR(a) = {λ ∈ C : λ − a /∈ R}
by e(a,A). For properties of the spectrum e(·, A), see [20], section 3. The set
expA is neither an upper semiregularity nor a lower semiregularity. In fact, from
[23], Lemma 2 we know that every lower semiregularity contains the set A−1.
Since expA ⊂ A−1 (and in general this inclusion is strict), expA is not a lower
semiregularity. Although expA contains a neighbourhood of 1 ([8], Corollary
I.8.4), expA is not an upper semiregularity: If a, b ∈ A then it is well-known
that ab = ba =⇒ eaeb = ebea = ea+b. The converse of this statement is not
true. In [29] the author proves that eaeb = ebea =⇒ ab = ba provided that the
spectra σ(a) and σ(b) are 2πi−congruence−free. In view of the definition of an
upper semiregularity ([23], Definition 10), expA is not an upper semiregularity.
However, if A is a commutative Banach algebra, then expA = ExpA, see the
remarks above. In this case expA is an upper semiregularity, see Proposition
3.2.1. Despite these remarks we show in our next result that σExpA is expA-
radius preserving.

Theorem 3.3.1 Let A be a Banach algebra. Then σExpA is expA-radius preserv-
ing.

Proof. Let S = expA and R = ExpA. Since S ⊂ R, we have that σR(a) ⊂ σS(a)
for all a ∈ A. Note that σR(a) is a closed set for all a ∈ A ([14], Theorem 1).
Since ησR(a) = ησS(a) for all a ∈ A ([20], Theorem 3.2), it follows that σExpA is
expA− radius preserving. 2

In sections 1 and 2 we compared various spectra with the usual spectrum
σ and in section 3 we compared the exponential spectrum with the spectrum
generated by expA. Recall that, for A a Banach algebra:
R1 = A;
R2 = A−1;
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R3 = A−1
l ;

R4 = A−1
r ;

R5 = {x ∈ A : x is not a left topological divisor of zero};
R6 = {x ∈ A : x is not a right topological divisor of zero};
Let
R7 = A \ ∂A−1;
R8 = A−1

l ∪ A−1
r ;

R9 = ExpA;
R10 = expA.

Corollary 3.3.2 Let A be a Banach algebra and a ∈ A. Then

sup{|λ| : λ ∈ σ(a)} = sup{|λ| : λ ∈ σRi
(a)(i = 2, ..., 10)}

Proof. This follows from Corollaries 3.1.5, 3.1.7, 3.1.9, 3.1.15, 3.2.4 and Theorem
3.3.1. 2

3.4 Subalgebras

In this section we continue our investigation of comparing regularities (semireg-
ularities) by involving subalgebras of a Banach algebra. We state three results
from literature that will guide our discussions.

Proposition 3.4.1 ([17], Proposition 3.2) Let A and B be Banach algebras such
that 1 ∈ B ⊂ A. If RA is a regularity in A and RB is a regularity in B, then
RA ∩RB is a regularity in B.

Corollary 3.4.2 ([17], Corollary 3.3) Let A and B be Banach algebras such that
1 ∈ B ⊂ A. If RA is a regularity in A then RA ∩B is a regularity in B.

Proposition 3.4.3 ([17], Proposition 3.4) Let A and B be Banach algebras such
that 1 ∈ B ⊂ A. Suppose RA is a regularity in A. Then σRA

(b) = σRA∩B(b) for
every b ∈ B.

We will generalize the above statements and show that they are valid for both
upper and lower semiregularities.

Proposition 3.4.4 Let A and B be Banach algebras such that 1 ∈ B ⊂ A. If RA

is an upper (lower) semiregularity in A and RB is an upper (lower) semiregularity
in B, then RA ∩RB is an upper (lower) semiregularity in B.
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Proof. Suppose that RA and RB are upper semiregularities. Let a ∈ RA∩RB, n ∈
N. Then a ∈ RA and a ∈ RB, hence an ∈ RA and an ∈ RB since RA and RB

are both upper semiregularities. Hence an ∈ RA ∩ RB. Next, let a, b, c, d be
mutually commuting elements of B satisfying ac + bd = 1 and a, b ∈ RA ∩ RB.
Then a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1 and
a, b ∈ RA. Since RA is an upper semiregularity, we have ab ∈ RA. Also, a, b, c, d
are mutually commuting elements of B satisfying ac+bd = 1 and a, b ∈ RB. Since
RB is an upper semiregularity, we know that ab ∈ RB. Hence ab ∈ RA ∩ RB. as
required. Finally, since RA and RB are upper semiregularities, they each contain
a neighbourhood of 1. Hence RA ∩RB contains a neighbourhood of 1. In view of
Definition 1.5.3, the above shows that RA ∩ RB is an upper semiregularity. It is
clear that RA ∩RB ⊂ B.
Next, suppose that RA and RB are lower semiregularities. Suppose that an ∈
RA ∩ RB, n ∈ N. Then an ∈ RA and an ∈ RB, n ∈ N. Hence, a ∈ RA and
a ∈ RB, since RA and RB are both lower semiregularities, hence a ∈ RA ∩RB as
required. Next, suppose that a, b, c, d are mutually commuting elements of B and
that ac+ bd = 1 and ab ∈ RA ∩RB. Then ab ∈ RA and ab ∈ RB. Since both RA

and RB are lower semiregularities, we have that a, b ∈ RA and a, b ∈ RB. Hence
a, b ∈ RA ∩ RB. In view of Definition 1.5.1, the above shows that RA ∩ RB is a
lower semiregularity. Again, it is clear that RA ∩RB ⊂ B. 2

Corollary 3.4.5 Let A and B be Banach algebras such that 1 ∈ B ⊂ A. If
RA is an upper (lower) semiregularity in A then RA ∩ B is an upper (lower)
semiregularity in B.

Proof. This follows from Proposition 3.4.4 and the fact that B is an upper (lower)
semiregularity. 2

Proposition 3.4.6 Let A and B be Banach algebras such that 1 ∈ B ⊂ A.
Suppose RA is an upper (lower) semiregularity in A. Then σRA

(b) = σRA∩B(b)
for every b ∈ B.

Proof. The proof follows from Corollary 3.4.5 and Theorem 3.1.1. 2

Proposition 3.4.7 Let A and B be Banach algebras such that 1 ∈ B ⊂ A. If
Ri is a regularity in A, then Ri ∩B is a regularity in B for i ∈ {2, 3, 4, 5, 6}.

Proof. For each i ∈ {2, 3, 4, 5, 6}, Ri is a regularity in A. In view of Corollary
3.4.2 the result follows. 2

Proposition 3.4.8 Let A and B be Banach algebras such that 1 ∈ B ⊂ A and
b ∈ B. If Ri is a regularity in A, then σRi

(b) = σRi∩B(b) for all i ∈ {2, 3, 4, 5, 6}.
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Proof. Ri is a regularity in A, for all i ∈ {2, 3, 4, 5, 6}. In view of Proposition
3.4.3 the result follows. 2

Proposition 3.4.9 Let A and B be Banach algebras such that 1 ∈ B ⊂ A and
let b ∈ B. Then σR7(b) = σR7∩B(b) for all b ∈ B.

Proof. R7 is an upper semiregularity in A. The result follows from Proposition
3.4.6. 2

Next, we let R7,A = A−1 and R7,B = B−1. Then we have

Proposition 3.4.10 Let A and B be Banach algebras such that 1 ∈ B ⊂ A.
Then R7,A ∩R7,B is an upper semiregularity in B.

Proof. R7,A is an upper semiregularity in A and R7,B is an upper semiregularity
in B. The result follows from application of Proposition 3.4.4. 2

Proposition 3.4.11 Let A and B be Banach algebras such that 1 ∈ B ⊂ A.
Then R8 ∩B is a lower semiregularity in B.

Proof. R8 is a lower semiregularity in A. In view of Corollary 3.4.5 the result
follows. 2

Proposition 3.4.12 Let A and B be Banach algebras such that 1 ∈ B ⊂ A.
Then σR8(b) = σR8∩B(b) for all b ∈ B.

Proof. R8 is a lower semiregularity in A. In view of Proposition 3.4.6 the result
follows. 2

Next, we let R3,B = B−1
l and R3,A = A−1

l . Similarly, R4,B = B−1
r and R4,A =

A−1
r . Then we have

Proposition 3.4.13 Let A and B be Banach algebras such that 1 ∈ B ⊂ A.
Then R3,B ∩R8 and R4,B ∩R8 are both lower semiregularities in B.

Proof. R8,A is a lower semiregularity in A, and each of R3,B and R4,B are regu-
larities, hence lower semiregularities in B. The result follows from application of
Proposition 3.4.4. 2
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Proposition 3.4.14 Let A and B be Banach algebras such that 1 ∈ B ⊂ A.
Then R9 ∩B is an upper semiregularity in B.

Proof. R9 is an upper semiregularity in A. In view of Corollary 3.4.5 the result
follows. 2

Proposition 3.4.15 Let A and B be Banach algebras such that 1 ∈ B ⊂ A.
Then σR9(b) = σR9∩B(b) for all b ∈ B.

Proof. R9 is an upper semiregularity in A. In view of Proposition 3.4.6 the result
follows. 2

To complete this section we consider the two sets that were neither semiregu-
larities nor regularities, namely R7 and R10. We cannot apply Proposition 3.4.1
or Corollary 3.4.2 or any of their generalizations to either of the two sets. How-
ever, we can ask whether they satisfy the condition stated in Proposition 3.4.3.
We have the following final result for this section.

Proposition 3.4.16 Let A and B be Banach algebras such that 1 ∈ B ⊂ A. Let
R ∈ {R7, R10}. Then σR(b) = σR∩B(b) for every b ∈ B.

Proof. Let A and B be Banach algebras such that 1 ∈ B ⊂ A. Let b ∈ B. If
λ ∈ σR(b, A) then λ− b /∈ R. Hence, λ− b /∈ R∩B, and so λ ∈ σR∩B(b, B). This
shows that σR(b, A) ⊂ σR∩B(b, B) for every b ∈ B. Conversely, let b ∈ B and
suppose λ ∈ σR∩B(b, B). Then λ− b /∈ R ∩B. Since B is a Banach algebra, and
λ, b ∈ B, we know that λ− b ∈ B, so λ− b /∈ R, hence λ ∈ σR(b, A). This proves
that σR∩B(b, B) ⊂ σR(b, A) for all b ∈ B, hence the result follows. 2

3.5 Subalgebras and superalgebras

In the previous section we investigated the intersection of a regularity or semireg-
ularity in a Banach algebra A with a subalgebra B. In this section we look at
the intersection of a regularity or semiregularity in A with the corresponding
structure (or set) in a subalgebra B. For ease of reference we state the following
result, which will be used often in this section:

Theorem 3.5.1 ([1], Theorem 3.2.13) Let A be a Banach algebra and let B be
a closed subalgebra of A containing the unit 1. We have:

1. B−1 is the union of some components of B ∩A−1, and the set ∂B−1 ∩ (B ∩
A−1) is empty.
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2. if x ∈ B, then σ(x,B) is the union of σ(x,A) and a (possibly empty)
collection of bounded components of C \ σ(x,A), in particular ∂σ(x,B) ⊂
∂σ(x,A).

We give an alternative proof of Theorem 3.5.1 using topological divisors of zero.

Proof. Let b ∈ B. Since B ⊂ A, we have B−1 ⊂ A−1 and from part 1 of
Theorem 3.1.1, we have that σA−1(b) ⊂ σB−1(b). Next let a ∈ ∂B−1. Then a is
a topological divisor of zero in B ([24], Theorem 1.1.14), so there is a sequence
(an) in B with ||an|| = 1 for all n ∈ N and aan → 0. Then (an) is a sequence in A
with ||an|| = 1 for all n ∈ N and aan → 0, hence a is a topological divisor of zero
in A, which means a /∈ A−1. Hence, ∂B−1 ∩ (B ∩ A−1) = ∅, and so by Theorem
3.1.1, ∂σB−1(b) ⊂ σB∩A−1(b) ⊂ σB−1(b) because B−1 ⊂ B ∩ A−1. If we employ
Proposition 3.4.6 and combine our arguments we get ∂σB−1(b) ⊂ σB∩A−1(b) =
σA−1(b) ⊂ σB−1(b). 2

Corollary 3.5.2 Let B be a closed subalgebra of a Banach algebra A, with 1 ∈
B ⊂ A. Then σA−1 is B−1 radius preserving.

Proof. Since for every b ∈ B, ∂σB−1(b) ⊂ σA−1(b) ⊂ σB−1(b) and since σA−1(b) is
closed, it follows that the spectrum σA−1 is B−1 radius preserving. 2

Next we consider the upper semiregularity R9. We compare the generalized
exponentials in the subalgebra B with those in the superalgebra A. We denote
ExpB by R9,B and ExpA by R9,A.

Theorem 3.5.3 Let A be a Banach algebra and let B be a closed subalgebra of
A containing the unit 1. Then ∂σR9,B

(b, B) ⊂ σR9,A
(b, A) ⊂ σR9,B

(b, B) for every
b ∈ B.

Proof. We have R9,B ⊂ R9,A so that σR9,A
(b) ⊂ σR9,B

(b) for every b ∈ B is clear.
We also have that R9,A ⊂ A−1 and since R9,B is a component of B−1 it follows
that ∂R9,B ⊂ ∂B−1. Hence, ∂R9,B ∩ (B ∩ R9,A) ⊂ ∂B−1 ∩ (B ∩ A−1) = ∅. The
last step follows from Theorem 3.5.1. In view of Theorem 3.1.1, we have that
∂σR9,B

(b) ⊂ σR9,A∩B(b) ⊂ σR9,B
(b) for every b ∈ B, because R9,B ⊂ B ∩ R9,A. In

view of Proposition 3.4.15, the result follows. 2

For a different proof of Theorem 3.5.3, see ([11], Theorem 4.1).

Corollary 3.5.4 Let B be a closed subalgebra of a Banach algebra A with 1 ∈
B ⊂ A. Then the spectrum σR9,A

is R9,B radius preserving.
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Proof. Since R9,A is an open set in A, σR9,A
is a closed set in the complex plane.

It follows from Theorem 3.5.3 that the spectrum σR9,A
is R9,B radius preserving.

2

Next, we consider the left and right invertibles, R3 = A−1
l , and R4 = A−1

r .

Proposition 3.5.5 Let B be a closed subalgebra of a Banach algebra A with
1 ∈ B ⊂ A. Then the spectrum σRi,A

is Ri,B radius preserving for i ∈ {3, 4}.

Proof. Recall that R3,A = A−1
l , R3,B = B−1

l , R4,A = A−1
r , R4,B = B−1

r . Let
i ∈ {3, 4}. The result follows from the facts that Ri,A is spectral radius preserv-
ing in A (Corollary 3.1.5), and Corollary 3.5.2. 2

In the above cases we had S ⊂ R and we asked whether ∂S∩R = ∅. That be-
ing highlighted, we next consider the topological divisors of zero and the boundary
spectrum.

As before we assume that A is a Banach algebra and that B is a closed Banach
algebra such that 1 ∈ B ⊂ A. To distinguish the structures in A and B we let
R5,A = {x ∈ A : x is not a left topological divisor of zero} and R5,B = {x ∈
B : x is not a left topological divisor of zero}. We know that if x is a left (right)
topological divisor of zero in B, then x must be a left (right) topological divisor
of zero in A. Hence we have:

Theorem 3.5.6 ([11], Theorem 3.1) Suppose B is a closed subalgebra of a Ba-
nach algebra A with 1 ∈ B ⊂ A. Then σR5,B

(b) ⊂ σR5,A
(b) and σR6,B

(b) ⊂ σR6,A
(b)

for all b ∈ B.

Proof. Since R5,A ⊂ R5,B it follows that σR5,B
(b) ⊂ σR5,A

(b) for all b ∈ B. It
follows similarly that σR6,B

(b) ⊂ σR6,A
(b) for all b ∈ B. 2

By Example 3.6 in [11], the inclusions from Theorem 3.5.6 may be strict.
However, our next result shows that these spectra are also radius preserving.

Theorem 3.5.7 Suppose B is a closed subalgebra of a Banach algebra A with
1 ∈ B ⊂ A. The spectrum σRi,B

is Ri,A radius preserving for i ∈ {5, 6}.

Proof. We prove the theorem for i = 5. The proof for i = 6 is similar and omitted.
By Theorem 3.5.6, σR5,B

(b) ⊂ σR5,A
(b) for all b ∈ B. In view of Proposition 3.1.6,

for all b ∈ B

∂σ(b, B) ⊂ σR5,B
(b) ⊂ σ(b, B)
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Hence, by Corollary 3.1.7

sup{|λ| : λ ∈ σ(b, B)} = sup{|λ| : λ ∈ σR5,B
(b)} (3.1)

Also, again by Proposition 3.1.6 and Corollary 3.1.7, for all b ∈ B

∂σ(b, B) ⊂ σR5,A
(b) ⊂ σ(b, A)

and so
sup{|λ| : λ ∈ σ(b, A)} = sup{|λ| : λ ∈ σR5,A

(b)} (3.2)

But, by Corollary 3.5.2

sup{|λ| : λ ∈ σ(b, B)} = sup{|λ| : λ ∈ σ(b, A)} (3.3)

If we combine (3.1), (3.2), and (3.3) we get

sup{|λ| : λ ∈ σR5,B
(b)} = sup{|λ| : λ ∈ σR5,A

(b)}

Since R5,B is an open set in B, the spectrum σR5,B
is R5,A radius preserving. 2

Let B be a closed subalgebra of a Banach algebra A with 1 ∈ B ⊂ A. In
the following results we are going to compare the boundary spectrum σR7 in B
with the boundary spectrum in A. Recall that the set R7 is neither an upper
nor a lower semiregularity, see Examples 3.1.10 and 3.1.12. Denote the boundary
spectrum in B by σR7,B

and the boundary spectrum in A by σR7,A
.

Theorem 3.5.8 ([21], Theorem 2.11) Let B be a closed subalgebra of a Banach
algebra A with 1 ∈ B ⊂ A. Then σR7,B

(b) ⊂ σR7,A
(b) for all b ∈ B.

Proof. Let b ∈ B. Since ∂BB
−1 ⊂ ∂AA

−1, ([21], Theorem 2.11), it follows that

σR7,B
(b) = {λ ∈ C : λ− b ∈ ∂BB−1}
⊂ {λ ∈ C : λ− b ∈ ∂AA−1}
= σR7,A

(b).

2

The next example shows that the inclusion from Theorem 3.5.8 is in general
strict.

Example 3.5.9 Let Γ = {z ∈ C : |z| = 1} and D = {z ∈ C : |z| ≤ 1}.
Let C(Γ) be the Banach algebra of continuous, complex valued functions defined
on Γ, with the supremum norm. Let A(D) be the Banach algebra of complex
valued functions which are continuous on Γ and analytic on the interior of D.
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Let A = C(Γ) × C(Γ) and B = A(D) × A(D). Let f(z) = z for z ∈ D. Then
f ∈ A(D) ⊂ C(Γ). It is easy to see that σ(f, C(Γ)) = Γ and σ(f, A(D)) = D. We
show that (f, 0) ∈ ∂A−1 but (f, 0) /∈ ∂B−1. To see that (f, 0) ∈ ∂A−1, let (λn) be
any sequence in C with 0 < |λn| < 1 and λn → 0. Then ((f − λn,−λn))→ (f, 0)
and (f − λn,−λn) ∈ A−1 for n ∈ N. Also, ((f, 0)) → (f, 0), and note that
(f, 0) /∈ A−1 so 0 ∈ σR7,A

((f, 0)).

Next we show that 0 /∈ σR7,B
((f, 0)). From [11], Example 3.6 we know that

f is not a topological divisor of zero in A(D), hence f /∈ ∂[A(D)]−1. Since
f /∈ [A(D)]−1 as well, there must be a neighbourhood of f in A(D) that contains
no elements from [A(D)]−1. Hence there is a neighbourhood of (f, 0) in B which
contains no elements from B−1. Hence (f, 0) /∈ ∂B−1, or 0 /∈ σR7,B

((f, 0)). Hence
σR7,B

((f, 0)) ( σR7,A
((f, 0)).

Theorem 3.5.10 Let B be a closed subalgebra of a Banach algebra A with 1 ∈
B ⊂ A. Then the spectrum σR7,B

is R7,A radius preserving.

Proof. Let b ∈ B. Since R7,B is an open set in B, the spectrum σR7,B
is a closed

set in C. From Theorem 3.5.8, we have that σR7,B
(b) ⊂ σR7,A

(b). In view of
Proposition 3.1.8, ∂σ(b, B) ⊂ σR7,B

(b) ⊂ σ(b, B) and so

sup{|λ| : λ ∈ σ(b, B)} = sup{|λ| : λ ∈ σR7,B
(b)} (3.4)

Again, by Proposition 3.1.8, ∂σ(b, A) ⊂ σR7,A
(b) ⊂ σ(b, A), and so

sup{|λ| : λ ∈ σ(b, A)} = sup{|λ| : λ ∈ σR7,A
(b)} (3.5)

But by Corollary 3.5.2

sup{|λ| : λ ∈ σ(b, B)} = sup{|λ| : λ ∈ σ(b, A)} (3.6)

If we combine (3.4), (3.5) and (3.6) we get

sup{|λ| : λ ∈ σR7,B
(b)} = sup{|λ| : λ ∈ σR7,A

(b)}

2

Next we consider the lower semiregularity R8 = A−1
l ∪ A−1

r . We need the
following theorem:

Theorem 3.5.11 Let A be a Banach algebra and let B be a closed subalgebra of A
containing the unit 1 of A. Then ∂B−1

l ∩(B∩A−1
r ) = ∅ and ∂B−1

r ∩(B∩A−1
l ) = ∅.
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Proof. We prove the statement for ∂B−1
l ∩(B∩A−1

r ) = ∅. The second part is sim-
ilar and omitted. Suppose x ∈ ∂B−1

l . Then, using [24], Theorem 1.1.14, we have
that x is a right topological divisor of zero in B. Hence x is a right topological di-
visor of zero in A. Using the same theorem, x /∈ A−1

r . Hence the result follows. 2

We let R8,A = A−1
l ∪ A−1

r and R8,B = B−1
l ∪B−1

r .

Proposition 3.5.12 Let B be a closed subalgebra of a Banach algebra A such
that 1 ∈ B ⊂ A. Then the spectrum σR8,A

is R8,B radius preserving.

Proof. Let B be a closed subalgebra of a Banach algebra A such that 1 ∈ B ⊂ A.
Then using Corollaries 3.1.15, 3.5.2, and 3.1.15 for b ∈ B, we get

sup{|λ| : λ ∈ σR8,A
(b)} = sup{|λ| : λ ∈ σA(b)}

= sup{|λ| : λ ∈ σB(b)}
= sup{|λ| : λ ∈ σR8,B

(b)}

Also, R8,A is open, hence σR8,A
is closed. The result follows. 2

Theorem 3.5.13 Let A be a Banach algebra. Then ∂A−1
l ∩A−1

r = ∅ and ∂A−1
r ∩

A−1
l = ∅. Also, ∂A−1

l ∩ A
−1
l = ∅ and ∂A−1

r ∩ A−1
r = ∅.

Proof. We prove that ∂A−1
l ∩ A−1

r = ∅ and ∂A−1
l ∩ A

−1
l = ∅. The second pair of

relationships is similar and omitted. Suppose x ∈ ∂A−1
l . Then, using ([24], The-

orem 1.1.14), we have that x is a right topological divisor of zero in A. Using the
same theorem, x /∈ A−1

r . We have shown that ∂A−1
l ∩A−1

r = ∅. Next, we note that
A−1
l is an open set in A. Hence A \A−1

l is a closed set and so ∂A−1
l ⊂ (A \A−1

l ),
which means that ∂A−1

l ∩ A
−1
l = ∅. This completes the proof. 2

Theorem 3.5.14 Let A be a Banach algebra. Then ∂σA−1
l

(a) ⊂ σA−1
l ∪A

−1
r

(a) ⊂
σA−1

l
(a) for all a ∈ A. Also, ∂σA−1

r
(a) ⊂ σA−1

r ∪A−1
l

(a) ⊂ σA−1
r

(a) for all a ∈ A.

Proof. We show that ∂σA−1
l

(a) ⊂ σA−1
l ∪A

−1
r

(a) ⊂ σA−1
l

(a) for all a ∈ A. The proof

of the second relationship is similar and omitted.

∂A−1
l ∩ (A−1

l ∪ A
−1
r )

= (∂A−1
l ∩ (A−1

l ) ∪ (∂A−1
l ∩ A

−1
r ))

= ∅,

using Theorem 3.5.13 2
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Corollary 3.5.15 Let A be a Banach algebra. Then the spectrum σR8,A
is R3,A

radius preserving and R4,A radius preserving.

Proof. Since R8,A is an open set in A, the spectrum σR8,A
is a closed set in C.

It follows from Theorem 3.5.13 that the spectrum σR8,A
is R3,A radius preserving

and R4,A radius preserving. 2

3.6 Fredholm Theory

In this final section we tie together two themes, the one from Chapter 2 and the
one from Chapter 3.

Let A be a Banach algebra and let I be a closed ideal in A. We say that
an element a ∈ A is Fredholm relative to I, if the coset a + I is invertible in
the quotient algebra A/I, i.e., a + I ∈ (A/I)−1. We denote the collection of
Fredholm elements in A relative to I by Φ(A, I). See also Definition 2.2.1. Let
π : A → A/I be the canonical homomorphism, i.e., π(a) = a + I (a ∈ A). Since
(A/I)−1 is a regularity in the quotient algebra A/I, Φ(A, I) = π−1((A/I)−1) is a
regularity in A, see [24], Theorem 1.6.3 (iii). Since π is continuous and (A/I)−1

is an open set in A/I, Φ(A, I) is an open regularity in A. The spectrum relative
to this regularity is called the Fredholm spectrum (relative to I) and is denoted
by σΦ(A,I) Note that for a ∈ A

σΦ(A,I)(a) = {λ : λ− a /∈ Φ(A, I)}
= {λ : (λ− a) + I /∈ (A/I)−1}
= σ(a+ I, A/I)

An element a ∈ A is called Weyl relative to I if a = b+c with b ∈ A−1 and c ∈
I. The collection of Weyl elements in A relative to I will be denoted byW(A, I).
Since W(A, I) is a semigroup containing A−1, it is an upper semiregularity, see
Lemma 1.5.4. The spectrum σW (A,I)(a) is called the Weyl spectrum of a ∈ A
relative to I. It is easy to see that

A−1 ⊂ W(A, I) ⊂ Φ(A, I)

and so

σΦ(A,I)(a) ⊂ σW(A,I)(a) ⊂ σ(a)

for all a ∈ A. In Fredholm theory the spectra σΦ(A,I) and σW(A,I) play an impor-
tant role, see [7]. If we restrict ourselves to a closed trace ideal and invoke the
theory in Chapter 2, we can say more.
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Theorem 3.6.1 Let A be a semisimple Banach algebra and let I be a closed trace
ideal in A such that SocA ⊂ I ⊂ kh(SocA). Then ∂σW(A,I)(a) ⊂ σΦ(A,I)(a) ⊂
σW(A,I)(a) for all a ∈ A.

Proof. From the assumptions and Corollary 2.4.5 it is clear that W(A, I) =
Φ0(A, I) ⊂ Φ(A, I). We claim that ∂W(A, I) ∩ Φ(A, I) = ∅. Let a ∈ ∂W(A, I).
So every neighbourhood of a contains points from W(A, I) and points from
A \ W(A, I). Either a ∈ Φ(A, I) or a /∈ Φ(A, I). If a /∈ Φ(A, I) then ∂W(A, I) ∩
Φ(A, I) = ∅ as required. Alternatively, suppose that a ∈ Φ(A, I). Then a must
be in a component of Φ(A, I). If a ∈ W(A, I) then W(A, I) is a neighbourhood
of a since W(A, I) = Φ0(A, I) which is open in Φ(A, I). But this neighbourhood
avoids A\W(A, I), hence contradicts a ∈ ∂W(A, I). So next, suppose that a ∈ U
where U is any component of Φ(A, I). Then again, U is open in Φ(A, I), hence a
neighbourhood of a. Since components are disjoint, we have that U∩W(A, I) = ∅,
which again contradicts a ∈ ∂W(A, I). Hence ∂W(A, I) ∩ Φ(A, I) = ∅. The re-
sult follows from applying Theorem 3.1.1. 2

Corollary 3.6.2 Let A be a semisimple Banach algebra and let I be a closed
trace ideal in A such that SocA ⊂ I ⊂ kh(SocA). Then the Fredholm spectrum
σΦ(A,I) is W(A, I) radius preserving.

Proof. From the discussion preceding Theorem 3.6.1 we have that Φ(A, I) is an
open set in A. (see also Proposition 2.2.6 (iv)). Hence, for a ∈ A, σΦ(A,I)(a) is
closed in C. It follows from Theorem 3.6.1 that the Fredholm spectrum σΦ(A,I) is
W(A, I) radius preserving. 2

If X is a Banach space and one wants to develop Fredholm theory in the
algebra L(X) relative to the closed ideal F(X), one can apply Theorem 3.6.1
because F(X) is a closed trace ideal in the Banach algebra L(X). See Example
2.1.2.
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