FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

NATIONAL DIPLOMA IN ENGINEERING:
ELECTRICAL, MECHANICAL, INDUSTRIAL AND MINING ENGINEERING, COMPUTER SYSTEMS, MINERALS SURVEYING

MODULE: MAT2AW2
CAMPUS: DFC

ENGINEERING MATHEMATICS 2

NOVEMBER EXAMINATION

DATE 09/11/2014
SESSION 08:30 – 11:30

ASSESSORS
MR IK LETLHAGE

INTERNAL MODERATOR
MR P SELOANE

DURATION 3 HOURS
MARKS 100

SURNAME AND INITIALS: __

STUDENT NUMBER: __

COURSE: ___

LECTURER: ___

CONTACT NO: __

NUMBER OF PAGES: 20 (VERIFY THAT THE NUMBER OF PAGES IN YOUR SCRIPT IS CORRECT)

INSTRUCTIONS: ANSWER ALL THE QUESTIONS
 USE THE BLANK PAGES AT THE BACK TO DO ROUGH WORK
 NO PAGES SHOULD BE REMOVED FROM THIS PAPER.
 USE ONLY BLUE OR BLACK INK TO WRITE. NO PENCIL.

REQUIREMENTS: INFORMATION BOOKLET
 NON-PROGRAMMABLE SCIENTIFIC CALCULATOR
INSTRUCTIONS
SHOW ALL THE STEPS TAKEN AND GIVE YOUR FINAL ANSWERS CORRECT TO TWO DECIMAL PLACES, WHERE APPLICABLE. USE THE BLANK PAGES FOR ROUGH WORK. USE PAGE 20 TO RE-DO ANY QUESTION YOU MAY HAVE CANCELLED OR IF YOU NEED MORE SPACE FOR WRITING. ANYTHING WRITTEN IN PENCIL WILL NOT BE MARKED.

QUESTION 1

1.1 If \(y = \sec^{-1}\sqrt{1-x^2} \), find \(\frac{d^2y}{dx^2} \) in its simplest form. (3)

1.2 Given \(y = \frac{(x^2-1)^{\tan x} \cdot \sqrt{x^2-2x}}{e^{x^2}} \), find \(\frac{dy}{dx} \) and write the answer in its simplest form. (5)
1.3 Use implicit differentiation to find $\frac{dy}{dx}$ in its simplest if $e^{xy} = xy + x^2$ (4)
1.4 The curtate cycloid is defined by the following parametric equations:

\[x = 8\theta - 4\sin\theta, \quad y = 8 - 4\cos\theta \]

and part of the graph is shown below.

Find \(\frac{d^2y}{dx^2} \) in its simplest form.
QUESTION 2

2.1 A function \(z = f(x, y) \) is said to be harmonic if it satisfies Laplace's equation:

\[
\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.
\]

Show that the function \(z = \ln \sqrt{x^2 + y^2} \) is harmonic. (5)
2.2 A surveyor wants to calculate the area of a triangular field. She measures two adjacent sides and finds that the one side has length $x = 155\,\text{m}$ and the other side has length $y = 220\,\text{m}$. Each of these measurements has a possible error of $0.3\,\text{m}$. She measures the angle between the two sides and finds that it is $\theta = 30^\circ$, with a possible error of 0.23°. Find the maximum error in the calculation of the area, A, of the field. The area is given by $A = \frac{1}{2}xy\sin\theta$.
2.3 A right circular cone is filled with water. Let h denote the height and r the radius of the water level at a given instant. Suppose that the cone has a hole at the bottom, denoted by O, and water is dripping through this hole. If the water is leaving the cone at a rate of $0.001 \text{m}^3/\text{min}$ and the height of the water is decreasing at a rate of $0.3 \text{m}/\text{min}$ at the instant when $h = 1 \text{m}$ and $r = 0.75 \text{m}$, calculate the rate at which the radius is changing. Is this an increase or a decrease? Give reasons for your answer. (6)
QUESTION 3
Evaluate the following integrals. Show all the integration steps and, where applicable, give answers correct to 2 decimal places.

3.1 \[\int \frac{1}{x + \sqrt[3]{x}} \, dt \]

3.2 \[\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos^2 x \sqrt{9 + 4 \tan^2 x}} \, dx \]
3.3 \int \frac{x^2 - 5x + 16}{(2x + 1)(x - 2)^2} \, dx
\[3.4 \int_0^{\frac{\pi}{2}} \sin^3 x \cos^5 x \, dx \]
\[3.5 \int \arctan \left(\frac{1}{x} \right) dx \]
3.6 \int \frac{(x + 4)}{\sqrt{5 + 4x - x^2}} \, dx \quad (6)
\[3.7 \int \frac{x^3}{\sqrt{16 + 9x^2}} \, dx \]
QUESTION 4

4.1 Calculate the area of the region bounded by the curves $y = 2x$, $y = x^2 - 4x$ and $x = -1$. (5)
4.2 The region bounded by the curves $y = x^2$ and $x = y^2$ is revolved about the line $y = -2$. Calculate the volume of the resulting solid. (4)
QUESTION 5

5.1 The rate of change of population is directly proportional to the population and is modelled by the differential equation \(\frac{dP}{dt} = kP \). Here \(P \) is a function of time \(t \) and \(k \) is a constant.

In 1995 the world population was estimated to be 5.74 billion persons, and in 2000 it was about 6.51 billion. Estimate the 2012 population.

5.2 Solve the differential equation \(\frac{dy}{dx} = \frac{x - y}{x + y} \).
5.3 Show that the differential equation below is exact and then solve it:

\[(3x^2y^2 + 2xy)\,dx + (2x^3y + x^2)\,dy = 0.\]
5.4 A resistor with resistance $R = 10 \Omega$, an inductor with inductance $L = 2 H$ and a battery with electromotive force $E = 40 V$ are connected in series, as shown in the diagram below. According to Kirchhoff’s Law,

Potential drop across R + Potential drop across L + Potential drop across $E = 0$.

That is, $10I + 2 \frac{dI}{dt} + (-E) = 0$, which simplifies to the differential equation $2 \frac{dI}{dt} + 10I = E$.

Find the current, I, subject to the initial condition $I(0) = 0$. \hfill (5)
5.5 Solve the differential equation \(\frac{dy}{dx} = \frac{2y}{x} - \frac{y^2}{x^2} \) (7)
USE THIS SPACE TO RE-DO ANY QUESTION YOU MAY HAVE CANCELLED