
Chaotic Particle Swarm Optimization ∗

Yanxia Sun
F’SATIE, Department of
Electrical Engineering,
Tshwane University of

Technology
Pretoria, South Africa

sunyanxia@gmail.com

Guoyuan Qi
F’SATIE, Department of
Electrical Engineering,
Tshwane University of

Technology
Pretoria, South Africa

guoyuanqi@gmail.com

Zenghui Wang
F’SATIE, Department of
Electrical Engineering,
Tshwane University of

Technology
Pretoria,South Africa

wangzengh@gmail.com
Barend Jacobus van Wyk

F’SATIE, Department of
Electrical Engineering,
Tshwane University of

Technology
Pretoria, South Africa

vanwykb@gmail.com

Yskandar Hamam
F’SATIE, Department of
Electrical Engineering,
Tshwane University of

Technology
Pretoria, South Africa

hamama@tut.ac.za

ABSTRACT
A new particle swarm optimization (PSO) algorithm with
has a chaotic neural network structure, is proposed. The
structure is similar to the Hopfield neural network with
transient chaos, and has an improved ability to search for
globally optimal solution and does not suffer from problems
of premature convergence. The presented PSO model is
discrete-time discrete-state. The bifurcation diagram of a
particle shows that it converges to a stable fixed point from
a strange attractor, guaranteeing system convergence.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization, Nonlinear,
programming, Simulated annealing; F.1.1 [Models of Com-

putation]: Computability theory, Self-modifying machines
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1. INTRODUCTION
Particle swarm algorithms have been shown to success-

fully optimize a wide range of problems [1, 2, 3, 4, 5]. The
development of the PSO and its applications was reviewed
in Ref. [3]. Ref. [1] proposed a PSO approach to identify
the autoregressive moving average with an exogenous vari-
able model for short-term power load forecasting. Ref. [2]
presented a modified PSO algorithm for engineering opti-
mization with constraints that algorithm was tested on sev-
eral engineering design optimization problems. Ref.[4, 5]
are two recent books which reviewed particle swarm opti-
mization algorithms and their engineering applications. The
PSO algorithm is based on a metaphor of social interaction
to search a space by adjusting the trajectories of individual
vectors, called “particles” conceptualized as moving points
in a multidimensional space. The random weight of the
control parameters is used to give a kind of explosion as
particle velocities and positional coordinates careen toward
infinity [6]. Most algorithm versions have some undesirable
dynamical properties [7, 8, 9]. Notably, the particle veloc-
ities need to be limited in order to control their trajecto-
ries. Clerc and Kennedy [6] have significantly improved the
convergence tendencies of particle swarm systems by intro-
ducing a constriction coefficient and by resorting to random
weights to control the search space of the particle trajec-
tories. PSO was also combined with other algorithms to
extend the search space. Typically, Ref. [9] used chaos and
PSO in an alternative fashion to avoid getting trapped in
local minima.

There are also some other optimizing algorithms such as
neural networks [10, 11]. Since Hopfield and Tank [12] ap-
plied their neural network to the traveling salesman prob-
lem, neural networks have been shown to provide a powerful
approach to a wide variety of optimization problems. How-



ever, the Hopfield neural network (HNN) is often trapped
in a local minima due to the use of local optimization algo-
rithms such as gradient descent. A number of modifications
were made to Hopfield neural networks to escape from the
local minima. Typical modifications are based on chaotic
neural networks [13] and simulated annealing [14] to solve
the global optimization problem [15]. In Refs.[16, 17, 18] the
guaranteed convergence of neural networks are discussed.

As PSO was developed to model birds flocking or fish
schooling for food [7], the decision of the future position
(determined by velocity) can be regarded as particle intel-
ligence. It is well known that although chaos is generated
by a deterministic nonlinear system it appears pseudo ran-
dom. Using a chaotic system to replace the effect of ran-
dom weights of the original PSO might be convenient for
analysis while maintaining stochastic search proper. Most
importantly, it might avoid the explosion of particle trajec-
tories caused to by random weights. By combining this idea
with neural networks, a particle model with a simple chaotic
neural network (CNN) structure is proposed in this paper..

2. PRELIMINARIES
Many optimization problems can be abstracted as the fol-

lowing functional optimization problem:

{

J(Xi) = g(Xi) +
∑k

j=1 λjF (pj(Xi)), Xi = [x
1
i , x

2
i , . . . , x

n
i ].

pj(X) ≥ 0, j = 1, 2, . . . , k.
(1)

Here g(·) is the objective function without constraints; Xi

denotes the position vector of particle i consisting of n vari-
ables and pj(Xi) is the j

th constraint.

The canonical particle swarm algorithm works by itera-
tively searching in a region and which is concerned with
the best previous success of each particle, the best previ-
ous success of the particle swarm and the current position
and velocity of each particle [7]. Every candidate solution of
J(X) is called a“particle”. The particle searches the domain
of the problem, according to

Vi(t+ 1) = ωVi(t) + c1R1(Pi −Xi(t))

+c2R2(Pg −Xi(t)), (2)

Xi(t+ 1) = Xi(t) + Vi(t+ 1), (3)

where Vi = [v
1
i , v

2
i , . . . , v

n
i ] is called the velocity of particle i;

Xi = [x
1
i , x

2
i , . . . , x

n] represents the position of particle i; Pi

represents the best previous position of particle i (indicat-
ing the best discoveries or previous experience of particle i);
Pg represents the best previous position among all particles
(indicating the best discovery or previous experience of the
social swarm); ω is called inertia weight that controls the
impact of the previous velocity of the particle on its current
one and it is sometimes adaptive [9]; R1 and R2 are two ran-
dom weights whose components rj

1 and r
j
2 (j = 1, 2, . . . , n)

are chosen uniformly within the interval [0, 1] which result
in a kind of explosion of the particle trajectory; c1 and c2
are the positive constant parameters. Generally the value
of each component in Vi should be clamped to the range
[−vmax, vmax] to control excessive roaming of particles out-
side the search space.

As every particle can be seen as the model of a single
fish or a single bird, the position chosen by the particle can
be regarded as a state of a neural network with a random
synaptic connection. According to (2)-(3), the position com-
ponents of particle i can be thought of as the output of a
neural network shown in Fig.1.
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Figure 1: Particle structure.

In Fig.1, Rand1(·) and Rand2(·) are two independently
and uniformly distributed random variables with range [0, 1],
which refer to rj

1 and r
j
2, respectively. p

j
i and pj

g are the

components of Pi and Pg, respectively. Although p
j
g is the

previous best value amongst all particles, pj
i as externally

applied input, is the jth element of the best previous posi-
tion Pi, and it is coupled with other components of Pi. The
particles fly toward a new position according to (2)-(3), and
this process is repeated until a defined stopping criterion is
met.

Remark 1. Fig.1 has three characters: (1) the structure
has feedback input that is similar to the Hopfield neural net-
work [12]; (2) the structure has an externally applied input
reminiscent of the back-propagation neural network [19]; (3)
it exhibits stochastic like chaos [13].

As pointed out by Clerc and Kennedy [6], the powerful
optimization ability of the PSO comes from the interaction
amongst the particles as they react to one another. The
analysis of complex interaction amongst the particle swarm
is beyond the scope of this paper which focuses on the con-
struction of a simple particle in the neural network perspec-
tive and the convergence of the PSO.

3. DYNAMICS OF THE SIMPLE PSO
Clerc and Kennedy [6] have reformulated (2) as

v
j
i (t+ 1) = ωv

j
i (t) + φ(p′i − x

j
i ), (4)

where

p
′

i =
c1r

j
1p

j
i + c2r

j
2p

j
g

c1r
j
1 + c2r

j
2

, φ = c1r
j
1 + c2r

j
2, (j = 1, 2, . . . , n).

Setting p′i as a constant value, the system will reduces
{

v(t+ 1) = ωv(t) + φ(p− x(t)),
x(t+ 1) = x(t) + v(t+ 1),

(5)

where φ and p are constants.
If we define y(t) = p− x(t), (5) becomes

{

v(t+ 1) = ωv(t) + φy(t),
y(t+ 1) = −ωv(t) + (1− φ)y(t).

(6)



with ω = 1. Eqn. (6) has been analyzed for various values
of ϕ and it has been proven that a non-random particle
trajectory is cyclical or quasi-cyclic when φ ∈ (0, 4) [6]. The
bifurcation of (6) with ω = 1 is shown in Fig. 2. The
corresponding Lyapunov exponents λ1 and λ2 both are 0
and the initial value of v(t) and y(t) have a great effect on
the range of y. For every value of φ the long term value of
y is shown in Fig. 2 after the initial transients have decayed
from the initial conditions v(0) = 0.1, y(0) = 0.01 for a 100
iterations.
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Figure 2: Bifurcation of single particle.

As seen from Fig. 2, its bifurcation becomes pseudo-
chaotic as φ approach 4. When a random weight is added
into (6), its dynamics will even become more complex and
difficult to analyze.

4. A MODEL OF THE CHAOTIC PARTICLES
We will now discuss the property of the HNN and incorpo-

rate it into the chaotic PSO in the sequel. Artificial neural
networks are composed of simple artificial neurons mimick-
ing biological neurons. The HNN has a property that as
each neuron in an HNN updates, an energy function is not
monotonously reduced until the network stabilizes. One can
therefore map an optimization problem to an HNN such that
the cost function of the problem corresponds to the energy
function of the HNN and the result of the HNN thus suggests
a low cost solution to the optimization problem. The HNN
might therefore be a good choice to model particle behavior.

As mentioned above, the HNN model of each particle po-
sition component has an external input Ii which is similar
to pj

i and p
j
g in Fig. 1, and its output is x

j
i (t). Similar to

the cost function of the HNN[20], the proposed PSO energy
function is given by

J
j
i (t) = A(xj

i (t)−p
j
g)

2+B(xj
ip(t)−p

j
i )

2+C(xj
i (t)−x

j
ip(t))

2
,

(7)
where A, B and C are positive constant, the expression
(xj

i (t)−p
j
g)

2 implies that xj
i (t) has a tendency to shift to the

best previous position component of the particle swarm P
j
i .

The expressions (xj
ip(t)−p

j
i )

2 together with (xj
i (t)−x

j
ip(t))

2

imply that xj
i (t) has a tendency toward the best previous po-

sition of particle i. If xj
ip(t) reflects the previous position,the

expression (xj
i (t) − x

j
ip(t))

2 illustrates that the average ve-
locity of particle i should be slower to save energy.

According to (2)-(3) or Fig. 1, the PSO must use ran-
dom weighting to simulate birds flocking or fish searching for
food. An intelligent particle by implication exhibits chaos-
like behavior. Ref. [13] proposed a kind of chaotic neuron,
which includes relative refractoriness in the model to sim-
ulate chaos in a biology brain. The convergence theorems
of (7)have been given in [16] and [18], but the theorems
were proposed based on many limitations associated with
energy functions. Ref. [17] presented a convergence theorem
for the HNN with arbitrary energy functions and discrete-
time dynamics for discrete neuronal input-output functions.
The theorem is that for a network of neurons with discrete
input–output neuronal response functions, for any change of
state in any neuron i, the energy is guaranteed to decrease
4Jj

i (t) < 0, if f(·) is a monotonously increasing function
and the network is updated according to the following rules:
(1)The network is updated asynchronously and,
(2)If the following equations have nonzero solutions for4xj

i (t)

and 4uj
i (t),

xi(t) +4xi(t) = f(ui(t) +4ui(t)), (8)

4ui(t) =
−w4Ji(t)

4xi(t)
, (9)

the state of neuron i is updated; it remains unchanged oth-
erwise. Where ui(t) is the input of the neurons, and xi(t)
is the state of the neurons, where ω > 0 is the updating
rate. In this paper we set ω = 1. With (8)and (9) satisfied,
the convergence of the energy function given by (7) can be
guaranteed.
For simplicity, the neuron input-output function is chosen
as a linear saturation function (10) and (13).The dynamics
of component jth of particle i can be described as

x
j
i (t+ 1) =







1 if kuj
i (t+ 1) > 1

ku
j
i (t+ 1) if kuj

i (t+ 1) ∈ [0, 1]

0 if kuj
i (t+ 1) < 0,

(10)

u
j
i (t+ 1) = u

j
i (t) +4u

j
i (t+ 1)− z(t)(xj

i (t)− I0), (11)

4uj
i (t+ 1) =

−
(

2A(xj
i (t)− pj

g) + 2C(x
j
i (t)− x

j
ip
(t))

)

1 + kA+ kC
,

(12)

x
j
ip
(t+ 1) =











1 if kuj
ip
(t+ 1) > 1

ku
j
ip
(t+ 1) if kuj

ip
(t+ 1) ∈ [0, 1]

0 if kuj
ip
(t+ 1) < 0,

(13)

u
j
ip
(t+ 1) = u

j
ip
(t) +4uj

ip
(t+ 1)

−z(t)(xj
ip
(t)− I0), (14)

4uj
ip
(t+ 1) =

−
(

2B(xj
i (t)− p

j
i )− 2C(x

j
i (t)− x

j
ip
(t))

)

1 + kB + kC
,

(15)

z(t+ 1) = (1− β)z(t). (16)

Here:
z(t) is the refractory strength;
β is the damping factor of the time-dependent z(t), (0 ≤
β ≤ 1);



I0 is the positive parameter.

By solving (7), (9), (10) and (13) simutanoeusly, we can
get (12) and (15). The self-coupling terms z(t)(xj

i (t) − I0)

and z(t)(xj
ip
(t) − I0) are added to (11) and (14) to cause

chaos. Here, the asynchronous updating arrangement is used
for the particle dynamic model, implying that the (10)-(11)
and (13)-(14) updating times are different. They use the
same time indices because particle does not distinguish be-
tween asynchronous updating sequences.

As can be seen from (10) and (13), the particle position
component xj

i is located in the interval [0, 1] and therefore
the optimization problem variable interval must be mapped
to [0, 1] and vice versa using

x
j =

xj − aj

bj − aj

, j = 1, 2, · · · , n. (17)

and

xj = aj + x
j(bj − aj), j = 1, 2, · · · , n. (18)

Here, aj and bj are the lower boundary and the upper bound-
ary of xj , respectively.

5. DYNAMICS OF CHAOTIC PSO
In this section, the dynamics of the chaotic PSO is an-

alyzed. The first subsection describes the dynamics of the
simplest chaotic particle swarm with different parameter val-
ues. The second subsection discusses the convergence of the
chaotic particle swarm. Constraints are not being consid-
ered for simplicity.

5.1 Dynamics of the simplest chaotic particle
swarm

In this section, the dynamics of the simplest particle swarm
model, which is similar in conception to (5), is analyzed.
Eqns. (7) and (10)-(16) are the dynamic model of the single
particle with subscript j ignored.
The values of the parameters in (7) and (10)-(16) are set as

A = 0.02, B = C = 0.01, ε = 1, z(t+ 1) = (1− β)z(t),

k = 15, I0 = 0.2, pi = 0.5, pg = 0.5.

All the parameters are fixed except z(t) which is varied. Fig.
3 shows the time evolution of x(t), z(t) and the Lyapunov
exponent λ of x(t). Here, λ is defined as

λ = lim
n→+∞

1

m

m−1
∑

t=0

ln|
dxi(t+ 1)

dxi(t)
|. (19)

The asynchronous updating arrangement should be changed
to synchronous updating to calculate the Lyapunov expo-
nent. The convergence process of the simple particle posi-
tion is described by the nonlinear bifurcation which makes
the particle converge to a stable fixed point from a strange
attractor. In the following section, it is shown that the fixed
point is determined by the best previous position Pg among
all particles and the best position Pi of the individual par-
ticle .

Remark 2. The model is a deterministic Chaos-Hopfield
neural network swarm which is different from existing ones
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Figure 3: Time evolutions of x(t), z(t) and the spec-

trum of Lyapunov exponent λ.

with stochastic parameters. Its search orbits show an evolu-
tion process of inverse period bifurcation from chaos to peri-
odic orbits then to sink. As chaos is ergodic and the particle
is always in chaotic state at the beginning (for example, in
Fig.3 ), it can escape from the trap when the particle un-
dergoes the suboptimal state. This proposed PSO model will
therefore not suffer from premature convergence problems.

5.2 Convergence of the particle swarm
According to (7), the interaction among particles in a

swarm is derived from the best previous position amongst all
particles. From (7) and (10)-(16), if t → ∞, z(t) decreases
linearly to 0. It would be easy to analyze (10)-(16) after
z(t) = 0 is fixed. There is only one equilibrium, i.e.

x
j
ie =

(AB +AC)pj
g +BCp

j
i

AB +BC +AC
, (20)

x
j
ipe =

(AB +BC)pj
i +ACpj

g

AB +BC +AC
. (21)

It is easy to show that the particle model (7)and (10)-(16)
has only one equilibrium as t → ∞, i.e., z(t) = 0. Hence,
as t → ∞, Xi belongs to the sphere whose origin is Pg and
the radius is ‖ max(Xrie) ‖ where the components x

k
rie of

Xrie are max(x
j
ie). For the above simplest chaotic particle

swarm and the parameters, the particle position approach
0.5 as seen in Fig. 3(a). As can be seen from (20) and (21),
x

j
ie ≈ pj

g if AÀ B,AÀ C or (AB +AC)À C.

6. NUMERICAL SIMULATION
To test the performance of the proposed algorithms,two

famous benchmark optimization problems [21] are used.

6.1 Rastrigin Function
To demonstrate the efficiency of the proposed technique,

one famous function Rastrigin function is chosen as the op-
timization problem. The Rastrigin function with two vari-
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Figure 5: The final convergent particle states

achieved from the proposed Chaotic PSO for Rast-

rigin function.

ables is described as:

f(X) = x
2
1+x

2
2−cos(18x1)−cos(18x2), −1 < xi < 1, i = 1, 2.

(22)
The global minimum is equal to -2 and the minimum point

is (0, 0). There are about 20 local minima arranged in a lat-
tice configuration.
The proposed technique is applied with a population size
of 20 and the chaotic particle swarm parameters are set as
follows
A = 0.02, B = C = 0.01, β = 0.001, z(0) = 0.7,

z(t+ 1) = (1− β)z(t), k = 30− 15(z(0)−z(t))
z(0)

, I0 = 0.2.

The position of every particle is initialized with random
value. The cost of the Rastrigin function is shown in Fig. 4
with time evolution. The global minimum at -2 is obtained
by the best particle with (x1, x2) = (0, 0).
From Fig. 4, we can see the proposed method gives good

optimization result. Because there are two variables in the
Rastrigin function, the final convergent particle states are
shown in the plane as Fig. 5. In Fig. 5, the ’∗’ at (0, 0) is
the best experience of all particles, and the other ’∗’ ones are
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Figure 6: The final particle states achieved from the

original PSO for Rastrigin function.

the best experience of each particle; the ’◦’ ones are the final
states of the particles corresponding to the ’∗’ ones in Fig.6.
When the original PSO [7] is used to optimize Rastrigin
function, the global minimum -2 can not be obtained by the
best particle with (x1, x2) = (0, 0) as seen in Fig. 6. In this
numerical simulation, the particle swarm population size is
also 20 and their parameters c1and c2 are both set to 2.
The final particle states are shown in Fig. 6. Compared the
results obtained from the proposed chaotic PSO in Fig. 5
and the original PSO in Fig. 6, it can be obviously found
that the particles of the proposed chaotic PSO are attracted
to the best experience of all the particles finally and the
convergence is better the original one. The chaotic PSO can
guarantee the convergence of the particles swarm but the
states of the original particle swarm are ruleless.

6.2 Goldstein Price Function
Another famous benchmark optimization problem is GP-

Goldstein-Price:

f(x) = (1 + (x1 + x2 + 1)
2(19− 14x1 + 3x

2
1 − 14x2

+6x1x2 + 3x
2
2))(30 + (2x1 − 3x2)

2(18− 32x1

+12x2
1 + 48x2 − 36x1x2 + 27x

2
2)). (23)

The global minimum is equal to 3 and the minimum point is
(0, -1). There are about 4 local minima arranged in a lattice
configuration.

The population size and the chaotic PSO parameters are
same to the Rastrigin function. The position of every par-
ticle is initialized with random value. The global minimum
at 3.0540 is obtained by the best particle with (x1, x2) =
(−0.0154,−1.0035). From Fig. 7, we can see the proposed
method gives good optimization result. Because there are
two variables in the Goldstein Price function, the final con-
vergent particle states are shown in the plane as Fig. 7, it
can be obviously found that the particles of the proposed
chaotic PSO are attracted to the best experience of all the
particles finally and the convergence is good. In Fig. 7,
the ’∗’ at (0,−1) is the best experience of all particles; the
’◦’ ones are the final states of the particles corresponding
to the ’∗’ ones in Fig.8. When the original PSO [7] is used
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to optimize Goldstein Price function, the global minimum 3
can not be obtained by the best particle as seen in Fig. 8.
In this numerical simulation, the particle swarm population
size is also 20 and their parameters c1and c2 are both set to
2. The final particle states are shown in Fig. 8.

Compared the results obtained from the proposed chaotic
PSO in Fig. 7 and the original PSO in Fig. 8, it can be
obviously found that the particles of the proposed chaotic
PSO are attracted to the best experience of all the parti-
cles finally and the convergence is better the original one.
The chaotic PSO can guarantee the convergence of the par-
ticles swarm but the states of the original particle swarm are
ruleless.

7. CONCLUSION
This paper proposed a particle model without random

weights for the PSO. It was shown that using a chaotic sys-
tem to determine the weights of the PSO guaranteed con-

vergence. As the model is derived from an HNN, it more
naturally describes the character of particles. An additional
issue is that the convergent range can be chosen based on
the knowledge of the convergence. As this is a general par-
ticle model, many techniques, which have been proposed for
the original PSO, can be used together with the new model.
This will be explored in future work.
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