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Abstract. To avoid the bored try and error method of finding a set of 
parameters of Particle Swarm Optimization (PSO) and achieve good 
optimization performance, it is desired to get an adaptive optimization method 
to search a good set of parameters. A nested optimization method is proposed in 
this paper and it can be used to search the tuned parameters such as inertia 
weight , acceleration coefficients c1 and c2, and so on. This method considers 
the cask theory to achieve a better optimization performance.  Several famous 
benchmarks were used to validate the proposed method and the simulation 
results showed the efficiency of the proposed method. 
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1 Introduction 

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart [1]. 
This algorithm is inspired by the social behavior of a flock of migrating birds trying to 
reach an unknown destination. All members obey a set of simple rules that model the 
communication within the flock, between the flocks and the environment. Each 
solution is a “bird” in the flock and is referred to as a “particle”. PSO has attracted a 
lot of attention as it makes few or no assumptions about the problem being optimized 
and can search very large spaces of candidate solutions [2, 4-7]. The formula of PSO 
is realized by two update functions: 

1 1 2 2( 1) ( ) ( ( )) ( ( )),i i i i g iV t V t c R P X t c R P X tω+ = + − + −              (1) 

( 1) ( ) ( 1).i i iX t X t V t+ = + +                           (2) 

Here 1 2, , n
i i i iV v v v=  is the velocity of particle i ; 1 2, , n

i i i iX x x x=  represents 

the position of particle i ; iP  represents the best previous position of particle i  
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(indicating the best discoveries or previous experience of particle i ); gP  represents 

the best previous position among all particles (indicating the best discovery or previous 
experience of the social swarm); ω  is the inertia weight that controls the impact of the 
previous velocity of the particle on its current velocity and is sometimes adaptive. 1R  

and 2R  are two random weights whose components 1
jr and 2

jr  ( 1,2 , , )j n=  are 

chosen uniformly within the interval [0,1]  which might not guarantee the convergence 

of the particle trajectory; 1c  and 2c  are the positive constant parameters. Generally 

the value of each component in iV  should be clamped to the range max max[ , ]v v−  to 

control excessive roaming of particles outside the search space.  
The generalized procedure of applying standard PSO 2011 (SPSO 2011) [8] is 

1) Initialize the swarm and assign a random position in the problem hyperspace to 
each particle and calculate the fitness function which is given by the optimization 
problem whose variables are corresponding to the elements of particle position 
coordinates; and set the topology of the whole particles. 

2) The particles search the area according to equations (1) and (2); check the 
velocity and position of particles to find whether they violate the boundaries. 

3) Evaluate the fitness function for each particle. 
4) For each individual particle, compare the particle's fitness value with its       

previous best fitness value. For each individual particle, compare the particle's fitness 
value with its previous best fitness value. If the current value Xi is better than the 
previous best value iP , then set iP  as iX . 

5) Change the topology if the optimization performance is not improved in a 
certain number of iterations. 

6) Repeat steps 2)-5) until a stopping criterion is met (e.g., maximum number of 
iterations or a sufficiently good fitness value). 

As can be seen from (1) and (2), there are several parameters which should be 
determined before PSO was applied. Similar as most of the evolutionary optimization 
algorithms, the parameters of PSO need to be chosen carefully to achieve good 
optimization performance. The parameters are often chosen based try and error 
method as different optimization problems have different characteristics and the 
parameters should not be same to achieve good optimization results. Hence, it is 
desired to find a suitable set of parameters of PSO without using the bored try and 
error method. For the evolutionary optimization algorithms, there are some methods 
optimizing the parameters of the optimization algorithms which are called meta-
optimization. Meta-optimization is reported to have been used as early as in the late 
1970s by Mercer and Sampson for finding optimal parameter settings of a genetic 
algorithm [9]. There are some meta-optimizations [10], [11], [12]. For different meta-
optimizations, there are different performance indexes.  

In this paper, an automatic parameters searching method is proposed based on the 
particle swarm optimization algorithm and the cask theory. The rest of this paper is 
arranged as follows: Section 2 presents the proposed algorithm with details. 
Simulations and comparison are given in Section 3. Finally, the concluding remarks 
appear in Section 4. 
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2 Cask Theory Based Parameter Optimization 

As the optimization performance depends on the optimization problems, the 
parameters of optimization algorithms should also depend on the optimization 
problems, which means different optimization problems should have different sets of 
parameters of optimization algorithms. As the optimization algorithms can find 
optimal or sub-optimal solution for the optimization problems, the optimization 
algorithms can also be used to find the optimal or sub-optimal parameters for PSO. 
Similar as the optimization procedure, the objective function or criteria related to the 
parameters of PSO must be defined firstly. There is an important theory is cask theory 
or barrel theory in Management Science [3]. The cask theory describes that the 
cubage of a cask is dependent on the shortest wood plate as shown in Fig. 1.  This 
method takes the worst case as the performance criteria and it is possible to make the 
optimization performance not worse than the achieved one. 
 

 

Fig. 1. Cask theory (www.baike.com) 

The parameter optimization procedure is same with the standard one as mentioned 
in Section 1. The core of the parameter optimization is defining the objective function 
or criteria. The followings are the factors, which should be considered, when design 
the objective function for PSO parameter optimization: 

 
1) Important parameters of PSO should be chosen and they will be the inputs of 

the objective function.  
2) The optimization problem should be considered as the implicit objective as 

the parameters are used to achieve good optimization performance for the 
optimization problem.   

3) The optimization performance should be stable when the obtained parameters 
are implemented. 

4) The output of the objective function should follow cask theory to guarantee 
the worst optimization performance is not too bad. 
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Here, without loss of generality, the algorithm of the SPSO 2011 [8] is chosen as 
the optimization algorithm whose parameters (inertia weight , and acceleration 
coefficients c1 and c2) will be optimized and the SPSO 2011 with fixed parameter is 
used to optimize these parameters. Hence, for 1) the inputs of the objective function 
are the inertia weight , the acceleration coefficients c1 and c2. For 2), the 
optimization problem will be the target of the SPSO 2011 with variant parameters 
(VSPSO 2011). For 3) and 4), the optimization problem should be optimized several 
runs by VSPSO to make sure the results are not stochastic; and the worst fitness value 
is chosen as the output of the objective function which follows the  cask theory. 

After the set of parameters are obtained, the normal procedure of PSO will be used 
to optimize the optimization problems. 

3 Numerical Simulation 

To demonstrate the efficiency of the proposed technique, eight well-known 
benchmarks are used to compare the proposed method and the standard PSO 2011 
(Matlab version) [8]. The eight optimization problems were used as shown in Table 1. 
The parameters of these optimization problems are given in Table 2. These eight 
optimization problems are famous test functions for minimization methods and each 
of them has high dimension and several local minima. In the numerical simulation of 
SPSO 2011 with fixed parameters, the particle swarm population size is set floor(10 + 
2 D ). Here D is the dimension of  the optimization problems and  function floor(A) 
rounds the elements of float number A to the nearest integers less than or equal to A. 

The rest of the parameters are as follows: inertia weight 
1

0.7213
(2 log 2)

ω = ≈ , 

learning rates 1 2 0.5 log 2c c= = + , and velocity Vmax set to the dynamic range of 

the particle in each dimension. For VSPSO 2011, the inertia weight , the 
acceleration coefficients c1 and c2 are the parameters to be optimized and all the initial 
ranges of , c1 and c2 are [0.2, 3]. To reduce the run time, the maximum number of 
function evaluations is 500 with 10 independent runs. The maximum number of 
function evaluations is 500 for these VSPSO 2011 using the parameters obtained and 
SPSO 2011 with 100 independent runs.  

The optimized parameters were given in Table 3. The optimization statistical 
analysis of proposed method and SPSO 2011 with fixed parameters was given in 
Table 4. As can be seen from Table 3, the parameters are totally different from the 
fixed parameters of SPSO 2011 and there are no rules to follow as the optimization 
problems are totally different. As can be seen from the Table 4, the optimization 
performance of VSPSO 2011 is more stable and it can guarantee the worst results are 
not worse than the worst results of SPSO 2011 as the proposed parameter 
optimization method is cask theory based parameter optimization method. 
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Table 1. Functions used to test the effects of the LGPSO method 

Sphere 
 

2

1

( )
D

i
i

f x x
=

=  
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1

( ) 10 ( 10cos(2 ))
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= + −  
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1 1
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i j

f x x
= =
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Table 2. Functions parameters for the test problems 

Functions Dimension Initial range 
Sphere 30 500±  

Rastrigin 30 500±  

Step 30 500±  

Rosenbrock 30 500±  

Ackley  30 500±  

Griewank 30 500±  

Salomon  30 500±  

Rotated hyper-ellipsoid 30 500±  

Table 3. Optimized parameters for the test problems 

Functions Inertia weight , 
and  

Acceleration 
coefficient c1 

Acceleration 
coefficient c2 

Sphere 0.5728     0.6336     0.8422 
Rastrigin 0.5908     0.6726     0.9059 
Step 0.6539     0.5442     0.6911 
Rosenbrock 0.6392     1.2737     0.5954 
Ackley  3.0000     3.0000     2.9441 

Griewank 0.5901     0.9769     0.7857 
Salomon  0.5424     0.3778     0.5264 
Rotated hyper-ellipsoid 0.5360     0.8172     0.6147 
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Table 4. Comparison between standard PSO 2011 and VSPSO 2011 

Problem Method best Mean 
 

Std.dev Worst  

Sphere Standard  PSO 
 2011 

1.0482e+0
05 

2.2438e+0
05 

5.6333e+00
4 

4.1521e+0
05 

Sphere VSPSO 2011 2.4199e+0
04 

7.0329e+0
04 

2.1287e+00
4 

1.2790e+0
05 

Rastrigin Standard  PSO 
 2011 

1.1813e+0
05 

2.2891e+0
05 

4.7518e+00
4 

3.5182e+0
05 

Rastrigin VSPSO 2011 3.1282e+0
04 

7.6292e+0
04 

2.2688e+00
4 

1.3040e+0
05 

Step Standard  PSO 
 2011 

114834 2.1631e+0
05 

4.3216e+00
4 

345796 

Step VSPSO 2011 27158 7.2645e+0
04 

2.2680e+00
4 

151432 

Rosenbr
ock  

Standard  PSO 
 2011 

9.3528e+0
10 

4.8421e+0
11 

2.1182e+01
1 

1.2005e+0
12 

Rosenbr
ock  

VSPSO 2011 4.8036e+0
09 

3.5983e+0
10 

2.4238e+01
0 

1.4794e+0
11 

Ackley  
 

Standard  PSO 
 2011 

20 20.2424 0.1278 20.5651 

Ackley  VSPSO 2011 20 20 0 20 

Griewan
k 

Standard  PSO 
 2011 

27.3732 57.4863 11.4453 90.7654 

Griewan
k 

VSPSO 2011 7.7910 16.8858 4.8584 35.0051 

Salomon 
 

Standard  PSO 
 2011 

37.5720 47.5551 4.7485 59.1266 

Salomon 
 

VSPSO 2011 17.2006 29.1404 4.0430 37.6110 

Rotated 
hyper-
ellipsoid 

Standard  PSO 
 2011 

4.5205e+0
05 

7.6140e+0
05 

1.7838e+00
5 

1.2665e+0
06 

Rotated 
hyper-
ellipsoid 

VSPSO 2011 6.8559e+0
04 

1.4094e+0
05 

4.2328e+00
4 

2.7582e+0
05 

4 Conclusion 

In this paper, a cask theory based parameter optimization based particle swarm 
optimization was proposed to find a good set of parameter of. This method can find 
sets of optimized parameters and using the obtained parameters can achieve better 
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optimization performance than the standard set of parameters. No prior experience is 
needed for this method. The simulations showed that the proposed method can 
achieve good optimization performance comparing with the SPSO 2011. Moreover, 
the simulations show that it can make sure the worst results are not worse than the 
worst results of SPSO 2011 as this is cask theory based parameter optimization 
method. This method can also be used to find the parameters of other optimization 
algorithms. 
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