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Abstract— A multilevel construction is introduced to create
distance-preserving mappings from binary sequences to permu-
tation sequences. It is also shown that for certain values, the
new mappings attain the upper bound on the sum of Hamming
distances obtainable for such mappings, and in the other cases
improve on those of previous mappings.

I. INTRODUCTION

Vinck [1] renewed the interest in permutation codes when

he suggested it for coding on a power-line communications

system. Ferreira et al [2], [3] then used the idea of distance-

preserving mappings (DPMs) [4] in creating mappings of

binary sequences to permutation sequences to construct per-

mutation trellis codes, while preserving the distance amongst

the codewords. They showed how new mappings could be

constructed by making use of a prefix method. Chang et al
[5] extended this further by presenting several constructions

for creating distance-preserving mappings. More recent con-

structions have been proposed by Lee [6] and Chang [7].

Swart, de Beer and Ferreira [8] presented an upper bound

on the sum of the Hamming distances in such mappings,

using simulation results to show that mappings attaining the

upper bound does indeed perform better than mappings that

do not. Wadayama and Vinck [9] presented a multilevel

construction for permutation codes, combining constant weight

binary codes to form permutation codes. Our construction in

this paper is based on this idea.

II. PRELIMINARIES

First, a brief overview of related definitions and a descrip-

tion of DPMs to permutation sequences will be given.

Definition 1 A binary code Cb consists of |Cb| sequences

of length n, where every sequence contains 0s and 1s as

symbols. �

Definition 2 A permutation code Cp consists of |Cp| se-

quences of length M , where every sequence contains the M
different integers 1, 2, . . . ,M as symbols. �

Definition 3 The symmetric group, SM , consists of the se-

quences obtained from permuting the symbols 1, 2, . . . , M in

all the possible ways, with |SM | = M !. �

For our mappings Cb will consist of all the possible binary

sequences of length n with |Cb| = 2n and Cp will consist

of some subset of SM with |Cp| = |Cb|. In addition, the

distances between sequences for one set is preserved amongst

the sequences of the other set.

For binary sequences, let xi be the i-th binary sequence in

Cb. The Hamming distance dH(xi,xj) is defined as usual as

the number of positions in which the two sequences differ.

Construct a matrix D whose entries are the distances between

binary sequences in Cb, where

D = [dij ] with dij = dH(xi,xj). (1)

Similarly for permutation sequences, let yi be the i-th per-

mutation sequence in Cp. The Hamming distance dH(yi,yj)
is also defined as the number of positions in which the two

sequences differ. Construct a matrix E whose entries are the

distances between permutation sequences in Cp, where

E = [eij ] with eij = dH(yi,yj). (2)

Example 1 The following is a possible mapping of n = 2 →
M = 3 (for subsequent mappings the binary sequences, which

will follow the usual lexicography, will be omitted)

{00, 01, 10, 11} → {123, 132, 321, 312}.

Using (1) and (2), we have for the above mapping

D =

⎡
⎢⎢⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤
⎥⎥⎦ and E =

⎡
⎢⎢⎣

0 2 2 3
2 0 3 2
2 3 0 2
3 2 2 0

⎤
⎥⎥⎦ .

In this case all entries had an increase in distance (except the

main diagonal where there is always zero distance). �

Previously, the three different mapping types were defined

in terms of trellis codes [3], but since only the mappings

themselves are considered, we will redefine it in terms of

distances between the binary and permutation sequences only.

• Distance-conserving mapping (DCM): guarantees con-

servation of the binary sequences’ Hamming distance,

such that eij ≥ dij , for all i �= j.

• Distance-increasing mapping (DIM): guarantees that the

permutation sequences’ distance will always have some
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increase above the binary sequences’ distance, such that

eij ≥ dij + δ, δ ∈ {1, 2, . . .} for all i �= j.

• Distance-reducing mapping (DRM): the permutation se-

quences’ distance has a distance loss which is guaranteed

to be not more than a fixed amount compared to the

binary sequences’ distance, such that eij ≥ dij + δ,

δ ∈ {−1,−2, . . .} for all i �= j.

In general δ defines the type of DPM, with δ = 0 indicating

a DCM, δ > 0 indicating a DIM and δ < 0 indicating a DRM.

We now introduce the notation M(n, M, δ) to indicate DPMs

from n-binary sequences to M -permutation sequences with δ
indicating the lower bound on the distance change and the

mapping type. The mapping in Example 1 would thus be a

M(2, 3, 1) mapping.

III. BINARY MULTILEVEL REPRESENTATION OF A

PERMUTATION

Any permutation can be written using a binary multilevel

representation, as in

0123 →
{

0101
0011

}
or 34201 →

⎧⎨
⎩

10001
10100
01000

⎫⎬
⎭ ,

where each symbol’s binary value is used as a column. Note

that for convenience the symbols 0, 1, . . . , M − 1 are used

instead of 1, 2, . . . ,M . The rows then form the different levels

that will be used. For length M sequences we will need L =
�log2 M� levels to represent the sequence.

To obtain different permutations, we swap (or transpose) the

columns according to certain rules for each level, starting at

level 1 and working down to level L. When considering the

k-th level, two columns, say a and b, can only be swapped if

there are different symbols (i.e. 0 and 1) in positions a and b on

level k and all the symbols on the levels k+1, k+2, . . . , L in

columns a and b are the same. This will be further illustrated

in the next example. For brevity, we will use swap(a, b) to

indicate swapping of columns a and b.

Example 2 Start with the M = 5 identity element, which is

01234 →
⎧⎨
⎩

01010
00110
00001

⎫⎬
⎭ .

For the first level, we can have no swaps,

swap(1, 2), swap(3, 4) and swap(1, 2)(3, 4), resulting in

{01010, 10010, 01100, 10100}.

For the second level, we can have no swaps, swap(1, 3),
swap(2, 4), swap(1, 4), swap(2, 3) and swap(1, 3)(2, 4), re-

sulting in {00110, 10010, 01100, 10100, 01010, 11000}.

For the third level, we can have no swaps, swap(4, 5),
swap(3, 5), swap(2, 5) and swap(1, 5), resulting in

{00001, 00010, 00100, 01000, 10000}.

The multilevel permutations, Pk, are used to represent the

set of possibilities on the k-th level. In this case we have

P1 = {01010, 10010, 01100, 10100}
P2 = {00110, 10010, 01100, 10100, 01010, 11000}
P3 = {00001, 00010, 00100, 01000, 10000}.

(3)

�

Since a subset from all the possible permutation sequences

must be chosen to do a mapping, we must know whether using

the multilevel representation will yield all the sequences in

SM .

Proposition 1 If the multilevel permutations, Pk, 1 ≤ k ≤
L are used for the multilevel construction, then for M it
generates all the permutation sequences from the symmetric
group, SM , with |SM | = M !. �

Briefly, by enumerating the number of possibilities for each

level and using induction, it can be proved that |P1| × |P2| ×
· · · × |PL| = M !.

Returning to Example 2, from (3) it is clear that |P1| = 4,

|P2| = 6 and |P3| = 5, and when multiplied together is equal

to |S5| = 5! = 120.

IV. MULTILEVEL CONSTRUCTION

The construction by Wadayama and Vinck [9] was limited

to the case where the input sequences was of length n = 2m,

with m any positive integer, and consisted of binary constant

weight codes. One can regard this as a mapping from binary

constant weight sequences to permutation sequences. Our

construction will be mapping all binary sequences of length n
to permutation sequences, as well as being valid for any value

of n.

From the multilevel permutations in the previous section, a

suitable subset is chosen to create the multilevel components,

Ck, for the k-th level, where Ck ⊆ Pk.

The idea of the multilevel construction is then to first create

a distance-preserving mapping from the binary subsequences,

n1, n2, . . . , nL, to the binary sequences of the multilevel

components, which can then be transformed into permutation

sequences. This is illustrated in Fig. 1, where L is the number

of levels, and for 1 ≤ k ≤ L, nk is the number of input bits

assigned to level k, with n1 + n2 + · · ·+ nL = n and Ck are

the multilevel components for level k.

Although any combination of swaps can be used on a level,

as was seen in Example 2, matters are simplified by only using

sequences that was obtained by combinations of the following

Input bits

n1

n2

nL

Multilevel
components

Input bits
n

Permutation
M

Permutation
M

C1

C2

CL

...
...

(a)

(b)

Input bits
n

Fig. 1. Comparison of (a) mapping using standard lexicography and (b)
mapping using the multilevel construction
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swaps

Level 1: swap(1, 2)(3, 4)(5, 6)(7, 8) · · ·
Level 2: swap(1, 3)(2, 4)(5, 7)(6, 8) · · ·
Level 3: swap(1, 5)(2, 6)(3, 7)(4, 8) · · ·
Level 4: swap(1, 9)(2, 10)(3, 11)(4, 12) · · ·

...

(4)

In general, the (i2k−1 + j)-th swap on the k-th level, where

1 ≤ j ≤ 2k−1, i ≥ 0, is given by swap(i2k+j, i2k+j+2k−1).

Example 3 To create an M(5, 5, 0) mapping, multilevel com-

ponents are chosen from the multilevel permutations in (3).

These should be chosen in such a way that distance is

preserved between the input subsequences and the component

sequences. However, the distance between the component

sequences should be equal to or larger than twice the distance

between the corresponding input subsequences. This will be

further clarified in Proposition 2.

We choose n1 = 2, n2 = 2, n3 = 1 and

C1 = {01010, 10010, 01100, 10100},
C2 = {00110, 10010, 01100, 11000},
C3 = {00001, 10000}.

(5)

Let Dk be the distance matrix between the input subsequences

on level k and let Ek be the distance matrix between the

components on level k. Then,

D1 =

⎡
⎢⎢⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤
⎥⎥⎦ E1 =

⎡
⎢⎢⎣

0 2 2 4
2 0 4 2
2 4 0 2
4 2 2 0

⎤
⎥⎥⎦

D2 =

⎡
⎢⎢⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤
⎥⎥⎦ E2 =

⎡
⎢⎢⎣

0 2 2 4
2 0 4 2
2 4 0 2
4 2 2 0

⎤
⎥⎥⎦

D3 =
[
0 1
1 0

]
E3 =

[
0 2
2 0

]
,

producing the required distance-preserving mappings. �

With the multilevel components, we can now map binary se-

quences to permutation sequences. The binary input sequence

is broken into L subsequences of lengths n1, n2, . . . , nL. Each

subsequence is mapped to a multilevel component, and the

corresponding L multilevel components are used to determine

the required permutation sequence. We start with the identity

element and swap columns (using the swaps set out in (4))

until the first level is the same as the chosen multilevel

component. Then proceed to the next level and repeat, until

all the levels have been done, then convert each column to a

decimal number to obtain the permutation sequence. The next

example illustrates this procedure, as well as showing a more

elegant method to present the mapping.

Example 4 Consider the binary input 10111 which is broken

into subsequences 10, 11 and 1. From (5) the corresponding

multilevel components are 01100, 11000 and 10000.

Start with the identity element for M = 5 in the multilevel

representation,

01010
00110
00001

.

For the first level, we require swap(3, 4), for the second level

swap(1, 3)(2, 4) and for the third level swap(1, 5). Thus, the

identity element is transformed as

01010
00110
00001

→
01100
00110
00001

→
10010
11000
00001

→
00011
01001
10000

,

remembering that the entire column is swapped, otherwise it

will not be a valid permutation. This M(5, 5, 0) mapping maps

10111 to 42013.

Since the mapping only makes use of swaps or combinations

of swaps in (4), it is easy to set up an algorithm, where

x1, . . . , x5 represents the binary sequence and y1, . . . , y5 rep-

resents the permutation sequence, as follows

Input: (x1, x2, x3, x4, x5)
Output: (y1, y2, y3, y4, y5)
begin

(y1, y2, y3, y4, y5) ← (0, 1, 2, 3, 4)
if x2 = 1 then swap(y1, y2)
if x1 = 1 then swap(y3, y4)
if x4 = 1 then swap(y1, y3)
if x3 = 1 then swap(y2, y4)
if x5 = 1 then swap(y1, y5)

end.

Using 10111 as input again, we obtain

01234
x2 = 0 → − → 01234
x1 = 1 → swap(y3, y4) → 01324
x4 = 1 → swap(y1, y3) → 31024
x3 = 1 → swap(y2, y4) → 32014
x5 = 1 → swap(y1, y5) → 42013,

resulting in the same permutation sequence. �

Let x be the binary sequence of length n and break it up

into subsequences of input bits for each level, with the i-th
input subsequence of length nk on level k being denoted by

xi,k. Assign ci,k to denote the i-th multilevel component for

level k, such that Ck = {c0,k, c1,k, . . . , c2nk−1,k}. Thus, we

have a mapping of xi,k → ci,k on level k.

Proposition 2 For 1 ≤ k ≤ L, choose a subset of the
multilevel permutations, Pk, to form the multilevel compo-
nents, Ck, such that Ck ⊆ Pk, and map input bits of length
nk to each possibility in Ck, such that |Ck| = 2nk with
n1 + n2 + · · · + nL = n. A DPM from binary sequences
to permutation sequences is obtained if

1) dH(ci,k, cj,k) ≥ 2dH(xi,k,xj,k), for DRMs and DCMs,
2) dH(ci,k, cj,k) ≥ 2dH(xi,k,xj,k) + δ − 1, for DIMs,

for all i �= j. �
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The following example is to illustrate how the input bits

can be assigned differently.

Example 5 Consider the following three M(6, 6, 0) map-

pings

M1(6, 6, 0) :
C1 =

{
010101, 100101, 011001, 101001,
010110, 100110, 011010, 101010

}
,

C2 = {001100, 100100, 011000, 110000},
C3 = {000011, 110000},

M2(6, 6, 0) :
C1 = {010101, 100101, 011010, 101010},
C2 = {001100, 100100, 011000, 110000},
C3 = {000011, 100001, 010010, 110000},

M3(6, 6, 0) :
C1 =

{
010101, 100101, 011001, 101001,
010110, 100110, 011010, 101010

}
,

C2 = {001100, 110000},
C3 = {000011, 100001, 010010, 110000}.

The input bits were assigned as n1 = 3, n2 = 2 and n3 = 1,

n1 = 2, n2 = 2 and n3 = 2, and n1 = 3, n2 = 1 and n3 = 2
respectively. To illustrate the difference between the mappings,

the E distance matrices are visualized in Fig. 2. The figure

clearly shows that the distances are distributed differently

in each mapping. Despite the differences, in each case the

mapping still satisfies the property of distance-preserving.

For all three mappings |E| = 19456 and |Emax| = 20472
(refer to the next section for the definitions of |E| and

|Emax|). �

V. UPPER BOUND ON DISTANCE

In [8], an upper bound was presented on the sum of the

Hamming distances that can be attained in a permutation

mapping. The sum of the Hamming distances in the E distance

matrix is

|E| =
2n∑
i=1

2n∑
j=1

eij . (6)

The upper bound is denoted by |Emax|, with

|Emax| = M [22n − (2αβ + β + α2M)], (7)

where α = 
2n/M� and β = 2n mod M , with 
.� producing

the integer part after division and mod producing the remainder

after division.

Proposition 3 Any multilevel DPM with M = 2l and l any
positive integer will attain the upper bound |Emax|, provided
the maximum distances are achieved between all the multilevel
components. �

The maximum distances between multilevel components are

only achieved when each component’s complement is also a

component, and this is only possible for values of M = 2l

and l any positive integer. The following example illustrates

this.

M1(6, 6, 0)

M2(6, 6, 0)

M3(6, 6, 0)

0 2 3 4 5 6Distance:

Fig. 2. Visualization of E distance matrices for different M(6, 6, 0)
mappings

Example 6 Consider an M(8, 8, 0) mapping with

C1 =

⎧⎪⎪⎨
⎪⎪⎩

01010101, 01010110, 01011001, 01011010,
01100101, 01100110, 01101001, 01101010,
10010101, 10010110, 10011001, 10011010,
10100101, 10100110, 10101001, 10101010

⎫⎪⎪⎬
⎪⎪⎭

,

C2 =
{

00110011, 00110110, 01100011, 01100110,
10011001, 10011100, 11001001, 11001100

}
.

It is easy to verify that the complement of each component in
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TABLE I

COMPARISON OF DISTANCES FOR VARIOUS MAPPINGS

M |Emax| Prefix [2] Construction 2 [5] Construction 3 [5] Construction [6] Construction 2 [7] Multilevel construction

4 768 732 768 768 – 768 768

5 4090 3616 3712 – 3872 4020 3712

6 20472 17072 17536 18432 – 18432 19456

7 98294 78528 81024 – 91016 88064 94208

8 458752 355840 367744 393216 – 413312 458752

9 2097144 – 1645696 – 1911000 1802240 1982464

10 9437160 – 7281792 7864320 – 8110080 9043968

11 41943022 – 31923328 – 37741432 36330496 40108032

12 184549344 – 138878080 150994944 – 154927104 180355072

C1 and C2 is also in C1 and C2.

Any of the following C3 components generates a DCM

when combined with the above C1 and C2. Alongside each

C3 we also list the respective |E| values,

C3 = {00001111, 10000111}, |E| = 409600,
C3 = {00001111, 11000011}, |E| = 425984,
C3 = {00001111, 11100001}, |E| = 442368,
C3 = {00001111, 11110000}, |E| = 458752.

One can see that as the distance between the C3 components

increases, the distance of the entire mapping also increases.

For this case |Emax| = 458752 and this is attained by the last

C3, the only one that contains the components’ complements

as well. �

In Table I we compare the |E| values of previous DCMs

with those of our new mappings. For both M = 4 and M = 8
our new mappings attain the upper bound, as the proposition

states. Even though our new mappings for other values of M
do not attain the upper bound, they are still an improvement

over the previous known mappings. Our new DIMs and DRMs

also attain the upper bound when M = 2l and l is any positive

integer.

VI. CONCLUSION

We introduced a new multilevel construction to create

mappings from binary sequences to permutation sequences,

while preserving the corresponding distances between the

sequences. Although it is not a construction for M in general,

it simplifies the process for finding mappings by breaking it

into smaller mappings. As example, to map n = 16 to M = 16
requires one to choose 65536 permutation sequences, while

preserving the distance between all those sequences. With this

new construction one only needs four n = 4 to M = 16
mappings, requiring 16 binary sequences to be chosen for each

smaller mapping.

Even though the mapping lacks generality, it has great

flexibility, as was shown in Example 5. In [3] it was observed

that different mappings that attain the upper bound can have

differing performance results when used in permutation trellis

codes. Using the flexibility one can obtain a mapping that is

optimal when combined with a certain trellis code.

To our knowledge, this is also the first construction that

can be used for distance-increasing and distance-reducing

mappings, in addition to distance-conserving mappings. It is

also the first construction to attain the upper bound on the

sum of the Hamming distances in such mappings for certain

lengths of permutations. (Note that constructions in [7] are

not increasing mappings according to the definitions presented

here.)

Finally, this construction is also applicable to permutation

sequences with repeating symbols, e.g. 123344. The same

procedure is used in obtaining the mappings, and several

have been constructed so far for various lengths and various

repeating symbols.
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