
Geometric optimization of micro-thermoacoustic 
cooler for heat management in electronics 

K.Tartibu, B.Sun and M.A.E. Kaunda 
Department of Mechanical Engineering 

Cape Peninsula University of Technology Box 652 
Cape Town 8000, South Africa 

Email: tartibuk@cput.ac.za 
 
 

Abstract—As a result of miniaturisation, electronic products 
are shrinking in size and weight but with greater pressure for 
cost reduction. Heat fluxes have increased considerably and 
hence thermal management becomes crucial from the reliability 
point of view. Thermoacoustic heat engines provide a practical 
solution to the problem of heat management in microcircuits 
where they can be used to pump heat or produce spot cooling of 
specific circuit elements. However, the most inhibiting 
characteristic of thermoacoustic cooling is its current lack of 
efficiency. A multiobjective optimization approach is presented to 
model and optimize a small-scale thermoacoustic regenerator. 
Optimization of multiple objectives components is 
considered and global optimal solutions have been 
identified using the epsilon constraint method. 

I. INTRODUCTION  
Thermal management has always been a concern for 

computer systems and other electronics. Computational speeds 
will always be limited by the amount of noise produced by 
computer chips. Since most noise is generated by wasted heat, 
computer components and other semiconductor devices operate 
faster and more efficiently at lower temperatures [1]. The need 
to manage heat fluxes of order 10–50 W/cm2 and higher in 
microcircuits has emphasized the importance of developing 
devices which can cope with such heat levels. Many interesting 
devices have been proposed for such applications. They range 
from forced convection cooling devices to thermoelectric 
devices, heat pipes, liquid coolants, and evaporative spray 
cooling devices [2]. 

Here thermoacoustic devices are proposed (Fig. 1); such 
engines can convert heat to sound or use sound to pump heat. 
They are a new application in the area of thermal management 
but based on their performance and adaptability to 
microcircuits they show much promise [3]. If thermoacoustic 
cooling devices could be scaled for computer applications, the 
electronic industry would realize longer lifetimes for 
microchips, increased speed and capacity for 
telecommunications, as well as reduced energy costs [4]. 

The basic mechanics behind thermoacoustics are already 
well understood. A detailed explanation of the way 
thermoacoustic coolers work is given by Swift [5] and Wheatly 
et al. [6]. Research is focusing on optimizing the method so 
that thermoacoustic coolers can compete with commercial 

refrigerators. The presence of a stack provides heat exchange 
with the sound field and the generation or absorption of 
acoustic power. With a suitable geometry substantial amounts 
of heat can be moved as demonstrated, for example, by Garrett 
and Hofler [7]. An interesting and important feature of such 
engines is that the performance depends on geometric factors 
and gas parameters [8]. 

               
Fig. 1. (a) Acoustic spot-cooler interfaced with circuit (b) Prime mover 

interfaced with circuit [3] 

Optimization techniques as a design supplement are 
severely under-utilized, and previous efforts in the 
optimization of thermoacoustic devices are rare. Minner et al. 
[9], Wetzel [10], Besnoin [11] and Tijani et al. [12] utilized a 
linear approach while trying to optimize the device. 
Additionally, most studies (the exception being the Minner et 
al. study) vary only a single parameter, holding all else fixed 
and ignored thermal losses to the surroundings. These 
Parametric studies are unable to capture the nonlinear 
interactions inherent in thermoacoustic models with multiple 
variables, and can only guarantee locally optimal solutions. 

Zink et al [13] and Trapp et al. [14] illustrate the 
optimization of thermoacoustic systems, while taking into 
account thermal losses to the surroundings that are typically 
disregarded. They use mathematical analysis and optimization 
and illustrate the conflicting nature of objective component 
considered in their modeling approach. In spite of their 
introductory nature, the presented works are important 
contributions to thermoacoustics as it merges the theoretical 
optimization approach with thermal investigation in 
thermoacoustics. Therefore since several conflicting objectives 
have been identified, an effort to effectively implement the 
epsilon constraint method for producing the Pareto optimal 
solutions in a multiobjective optimization mathematical 
programming method is carried out in our approach. This has 
been implemented in the widely used modeling language 
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GAMS [15] (General Algebraic Modeling Language, 
www.gams.com). As a result, Gams codes are written to 
define, to analyze, and solve optimization problems to 
generate sets of Pareto optimal solutions unlike previous 
studies.  

The remainder of this paper is organized in the following 
fashion: the fundamental components of our mathematical 
model characterizing the standing wave thermoacoustic heat 
engine are presented in Section 2. Section 3 illustrates our 
optimization procedure. Section 4 considers multiobjective 
optimization using epsilon constraint method. In Section 4, we 
conclude by suggesting possible future extension of this work. 
 

II. MODELLING APPROACH 

In this section, our modelling approach for the physical 
standing wave engine depicted in Fig. 2 is discussed; the 
development of our mathematical model and its corresponding 
optimization is included. The problem is reduced to a two 
dimensional domain, because of the symmetry present in the 
stack. Two constant temperature boundaries are considered 
namely one convective boundary and one adiabatic boundary, 
as shown in Fig. 2. For our model, only the regenerator 
geometry is considered; the model considers variation in 
operating condition and the interdependency of stack location 
and geometry. 
Five different parameters are considered to characterize the 
regenerator: 

• L: Stack length, 
• H: stack height, 
• Za: stack placement (with Za=0 corresponding to the 

closed end of the resonator tube), 
• d: channel diameter, and 
• N: number of channels. 

Those parameters have been allowed to vary simultaneously. 
Five different objectives as described by Trapp et al. [14] 
namely two acoustic objectives (Acoustic work W  of the 
thermoacoustic engine and viscous resistance VR  through the 
regenerator [16]) and three thermal objectives (convective heat 
flow convQ , radiative heat flow radQ , and conductive heat 
flow condQ ) are considered to measure the quality of a given 
set of variable value that satisfies all of the constraint. Because 
work is the only objective to be maximized, we instead 
minimize its negative magnitude along with all of the other 
components. Ultimately, optimizing the resulting problem 
generates optimal objective function value 

[ ]∗∗∗∗∗∗ = condradconv,V Q,Q,QR,WG and optimal 

solution [ ]∗∗∗∗∗∗ = N,Za,d,H,Lx . 
Since the five objectives are conflicting in nature [14], a 
multiobjective optimization approach has been used.  Those 
objectives are conflicting in the sense that, if optimized 
individually, they do not share the same optimal solutions. 
Since we optimize multiple objective components 
simultaneously, each objective component has been given a 

weighting factor iw  to provide appropriate user-defined 
emphasis. 

 
Fig.2. Computational domain 

According to Hwang and Masud [17], the methods for 
solving multiobjective mathematical programming problems 
can be classified into three categories, based on the phase in 
which the decision maker involves in the decision making 
process expressing his/her preferences: the a priori methods, 
the interactive methods and the a posteriori or generation 
methods. The a posteriori (or generation) methods give the 
whole picture (i.e. the Pareto set) to the decision maker, before 
his/her final choice, reinforcing thus, his/her confidence to the 
final decision. In general, the most widely used generation 
methods are the weighting method and the ε -constraint 
method. These methods can provide a representative subset of 
the Pareto set which in most cases is adequate. The basic step 
towards further penetration of the generation methods in our 
multiobjective mathematical problems is to provide 
appropriate codes in a Gams environment and produce 
efficient solutions. 
 

III. ILLUSTRATION OF THE OPTIMIZATION PROCEDURE OF THE 
REGENERATOR 

The five variables N,Za,d,H,L  may only take values 
within the certain lower and upper bounds. The feasible 
domain for a thermoacoustic regenerator is defined as follow: 

maxmin

maxmin

maxmin

maxmin

maxmin

NNN
LZaZaZa

ddd
HHH

LLL

≤≤
−≤≤

≤≤
≤≤

≤≤

    (1) 

+ℜ∈Za,d,H,L and +Ζ∈N  
Additionally, the total number of channels N  of a given 
diameter d  is limited by the cross-sectional radius of the 
resonance tube H . Therefore the following constraint relation 
can be determined: 

( ) H2tdN w ≤+      (2) 
where wt  represents the wall thickness around a single 
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channel. The relation between the stack perimeter ∏ and the 
cross sectional area A as determined by Swift [16] is given by: 

twd
A2

+
=∏      (3) 

The following boundary conditions must also be enforced: 
1. Constant hot side temperature ( )hT , 
2. Constant cold side temperature ( )CT , 
3. Adiabatic boundary, modeling the central axis of the 
cylindrical stack: 

;0
r
T

0r
=

∂
∂

=
     (4) 

4. Free convection and radiation to surroundings (at ∞T ) with 
temperature dependent heat transfer coefficient ( )h , 
emissivity ε , and thermal conductivity ( )k : 
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The acoustic power per channel has been derived by Swift 
[15]. The following equation can be derived for N  channel: 
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      (6) 
The thermal penetration depth kδ , the viscous penetration 
depth vδ  and the critical temperature are given by the 
following equations: 

ωρ
δ
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With K  being the thermal conductivity, mρ  the mean 
density, pc  the constant pressure specific heat, μ  is the 
diffusivity of the working fluid and ω  the operating 
frequency. 
The amplitudes of the dynamic pressure p  and gas velocity 
u due to the standing wave in the tube are given by: 
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with 
c.

p
u max

max ρ
=     (12) 

The heat capacity ratio can be expressed by [16]: 
( )
( )

( )( )
( )( )s
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ssp
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This expression can be simplified to values of k0 /y δ=ε if 
1/y k0 <δ and 1=ε if 1/y k0 >δ [13], where 0y half of the 

channel height is, l  is half of the wall thickness and sδ  is the 
solid’s thermal penetration depth. 
Just as the total acoustic power of the stack was dependent on 
the total number of channels, the viscous resistance also 
depends on his value. The following equation can be derived: 

( ) NHtd
L2

NA
LR

2
wVV

2
C

V
π+δ
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δ
∏μ=   (14) 

The heat transfer coefficient and the heat flux to the 
surroundings were estimated using a linear temperature 
profile. In this model, the actual temperature distribution 
throughout the stack is taken into account by utilizing 
MATLAB finite element toolbox [18], which captures the 
temperature dependence of the heat transfer coefficient. Only 
the temperature distribution at the shell surface and the 
temperature gradient at the cold side are of interest. Trapp et 
al. [13] have derived the final surface temperature distribution 
as a function of axial direction Za . It is given by: 
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The convective heat transfer coefficient and the radiative heat 
flux to the surroundings are assumed to be dependent on the 
temperature. The total convective heat transfer across the 
cylindrical shell in its integral form can be described by: 

( )( ) ( )( )∫ ∫
π

∞ ρ−=
2

0

L

0
conv dxdTxTxThHQ   (16) 

It is shown for the case of a horizontal tube subject to free 
convection [18], the heat transfer coefficient h is derived from 
the Nusselt number, which is a non-dimensional heat transfer 
coefficient as follow: 
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This expression depends on the Prandtl number, which can be 
expressed by: 

α
ν=Pr       (19) 

( )
να
−β

= ∞
3

S H8TTg
Ra     (20) 

where Pr  is the Prandtl number, ST  is the surface 
temperature, ∞T  is the (constant) temperature of the 
surroundings, ν  is the viscosity of the surrounding gas, and α  
is the thermal diffusivity of the surrounding gas (air). The 
temperature distribution stated in Eq.15 is then used to 
determine the convective heat transfer to the surroundings. 
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After integrating we derive the following heat flow 
expressions: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
π= ∞T

T
T

ln

TT
HLh2Q

H

C

HC
conv    (21) 

The radiation heat flux becomes increasingly important as HT  
increases, as shown in the following equation: 
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Where Bk  is the Stefan Boltzmann constant, and ε  is the 
surface emissivity, which depends on the emitted wavelength, 
and in turn is a function of temperature. After integrating we 
derive the following heat flow expressions: 
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The conductive heat flux is representative of the heat loss 
across the cold end of the domain. As the temperature gradient 
there is non-zero, a heat flux must be present. It is assumed 
that thermal energy is removed via the cooling water flow. 
Similar to the cylindrical shell, this heat flux has to be 
integrated over the whole surface representing the cold side: 
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Where the value of the axial thermal conductivity zzk is 
determined by the following equation: 
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The temperature distribution is used to determine the 
temperature gradient at the top surface Za , Hr =  .The 
general statement of Fourier law of thermal conduction 

expressed as 
x
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t
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IV. EMPHASIZING ALL OBJECTIVE COMPONENTS 
 
All the expressions involved in our mathematical model 
(MPF) have been presented in the previous section. Together 
with the following expressions, they represent a non-linear 
mixed integer program: 

( ) ( ) cond5rad4conv3V21
N,d,Z,H,L

QwQwQwRwWwminMPF
a

++++−=ξ

      (28) 
There is no single optimal solution that simultaneously 
optimizes all the two objectives functions. In these cases, the 
decision makers are looking for the “most preferred” solution. 
To find the most preferred solution of this multiobjective 
model, we apply the augmented ε -constraint method 
(AUGMECON) as proposed by Mavrotas [20]. The ε -
constraint method has several important advantages over 
traditional weighted method. These advantages are listed in 
[20]. In the conventional ε -constraint method, there is no 
guarantee that the obtained solutions from the individual 
optimization of the objective functions are Pareto optima or 
efficient solutions. In other to overcome this deficiency, the 
lexicographic optimization for each objective functions to 
construct the payoff table for the multiobjective mathematical 
programming (MMP) is proposed here in other to yield just 
Pareto optimal solutions. The mathematical details of 
computing payoff table for MMP problem can be found in 
[21]. The augmented ε -constraint method for solving model 
(Eq.35) can be shown as follows: 
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 ( ) 333 esxF =−  

… 
( ) ppp esxFmax =−  

Sx ∈  and +ℜ∈is  
To illustrate our approach, we consider the thermoacoustic 

couple (TAC) as described in [22]. It consists of a parallel-
plate stack placed in helium-filled resonator. All relevant 
parameters are given in Table I and Table II. 

 

TABLE I: Specifications for Thermoacoustic couple 
Parameter Symbol Value Unit 

Isentropic coefficient ν  1.67  
Gas density ρ  0.16674 kg/m3 

Specific heat capacity pc  5193.1 J/kg.K 

Dynamic viscosity μ  1.9561.10-5 kg/m.s 

Maximum velocity maxu  670 m/s 

Maximum pressure maxp  114003 Pa 
Speed of sound c  1020 m/s 
Thickness plate wt  1.91.10-4 M 

Frequency f  696 Hz 

Thermal conductivity Helium gk
 

0.16 W/(m.K) 

Thermal conductivity stainless steel Sk  11.8 W/(m.K) 

Isobaric specific heat capacity pc
 

5193.1 J/(kg.K) 

 

530



TABLE II: Additional parameters used for programming 
Parameter Symbol Value Unit 

Temperature of the surrounding ∞T  298 K 

Constant cold side temperature CT  300 K 

Constant hot side temperature HT  700 K 

Wavelength  λ  1.466 m 

Thermal expansion β  ∞T/1  1/K 
Thermal diffusivity α  2.1117E-5 m2s-1 

 
The following constraints (upper and lower bounds) have been 
enforced on variables in other for the solver to carry out the 
search of the optimal solutions in those ranges: 

kk .4up.d;.2lo.d

;005.0lo.H
;005.0lo.Za

;05.0up.L;005.0lo.L

δ<δ>

=
=

==

   (30) 

We use lexicographic optimization for the payoff table, the 
application of model (Eq.29) will provide only the Pareto 
optimal solutions (like in the previous case), avoiding the 
weakly Pareto optimal solutions. Efficient solutions of the 
proposed model have been found using AUGMENCON 
method and the LINDOGLOBAL solver. To save 
computational time, the early exit from the loops as proposed 
by Mavrotas [20] has been applied. The integer variable N has 
been given values of 20 to 50. This process generates optimal 
solutions corresponding to each integer variable. The 
following section report only sets of Pareto solutions obtained: 
 
TABLE III: Non-dominated solutions found by AUGMENCON 

N  ∗L  ∗d  ∗H  ∗Za  CPU time (s) 

26 0.050 0.00091589 0.014 0.005 4151.219 

31 0.006 0.00058140 0.012 0.005 11317.03 

33 0.006 0.00058140 0.013 0.006 8880.250 

36 0.050 0.00108681 0.022 0.005 3288.672 

38 0.005 0.00059305 0.015 0.005 7109.984 

39 0.008 0.00113555 0.026 0.005 8153.719 

40 0.046 0.00112554 0.027 0.005 3073.156 

42 0.049 0.00079919 0.021 0.005 3347.157 

43 0.050 0.00091167 0.024 0.005 3420.937 

45 0.041 0.00110152 0.030 0.005 2838.093 

49 0.006 0.00058146 0.019 0.005 10124.55 

 
Figure 3 represents the Pareto solutions graphically; it shows 
that for a specific number of channels correspond a specific 
stack height, a specific stack position and a specific spacing 
between plates. There is not only a single optimal solution that 
optimize the geometry of the regenerator and highlight the fact 
that the geometrical parameters are interdependent, which 
support the use of a multiobjective approach for optimization. 
 

 
 

Fig.3. Optimal structural variables 

These optimal solutions are then used to construct Figure 4 
and Figure 5 representing respectively acoustic work, viscous 
resistance, conductive, convective and radiative heat fluxes 
obtained for different values of N. For maximum performance 
of the device, the acoustic power has to be maximized and the 
viscous resistance and thermal losses minimized. The 
conflicting nature of the five objectives can be observed in 
those profiles. For instance, while the acoustic power, the 
viscous resistance, the convective and the radiative heat fluxes 
decrease between 26 and 31 channels, the conductive heat flux 
increases (with L*, d*, H* and Za* given respectively in Table 
III). 
 

 
 

 
 

Fig.4. Acoustic power, viscous resistance plotted as a function of N 
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Fig.5. Conductive, convective and radiative heat fluxes plotted as a function 

of N 
 

V. CONCLUSION 

In order for a thermoacoustic engines to be competitive on the 
current market, they have to be optimized in order to improve 
its overall performance. Previous studies have relied heavily 
upon parametric studies. This work target the geometry of the 
thermoacoustic regenerator and uses multiobjective 
optimization approach to find the optimal set of geometrical 
parameters that optimizes the device. Five different objectives 
have been identified; a weight has been given to each of them 
to allow the designer to place desired emphasis. Mixed-integer 
nonlinear programming for thermoacoustic regenerator has 
been implemented in Gams. For the cases of multiobjective 
optimization, a nonlinear programming for thermoacoustic 
regenerator has been implemented in Gams. We have applied 
an improved version of a well-known multiobjective solution 
method, i.e., the epsilon constraint method called augmented 
epsilon constraint method (AUGMENCON). The results 
found shows the interdependence between the geometrical 
parameters of the regenerator which support the use of our 
multiobjective approach to optimize the geometry of 
thermoacoustic engine. Although the efficient solutions of 
proposed model could be found using AUGMENCON method 
by using commercial optimization solver LINDOGLOBAL, it 
should be noted that the corresponding computational time 
grows exponentially with problem size. Therefore, developing 
heuristic or metaheuristic solution methods could be of great 
interest.  
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