

Abstract-There is a growing demand for high

definition (HD) graphics with multimedia content. This

demand requires significantly more computational

power than before. The increased demand in video

content will continue to grow, resulting in vast volumes

of data continuously shifted across networks and the

internet. The volume of video data must be decreased in

order to better align to trends while maintaining efficient

transmission and real-time processing requirements. In

this work, the volume of information in HD images are

decreased by reducing the image to greyscale while

maintaining real-time performance requirements. The

real-time processing requirement is met by shifting the

computation to the graphics processing unit (GPU). The

GPU is a programmable massively parallel processing

unit with numerous cores. The performance of the

colourisation technique which adds chrominance to the

greyscale image is drastically increased using the GPU,

which would otherwise take several minutes to colourise

a 1080p image. The results indicate that a video

compression scheme for HD video is viable.

Index Terms—Colourisation, compression, general-

purpose computing, graphics processing unit (GPU).

I. INTRODUCTION

The application and services of multimedia entertainment

are vast: IPTV, SD/HD video, video gaming, SD/HD video

conferencing, virtual classroom, and video/audio streaming

to mention a few. In addition there are also numerous

handheld devices available to consumers, with increasing

expectation for integrated HD graphic content in

multimedia. Within this context, the use of compression is

mandatory as the storage and transmission requirements are

too great [1], [4], [6].

A recent, though not greatly researched approach to video

compression makes use of image colourisation, a technique

where colour is added to a greyscale image. There is

significantly less information in a greyscale image than a

colour image. Here compression is achieved since two

channels of intensity representing the colours are not

present, though approximated and added later to finally

produce a colour image. In work presented by Kumar et. al.

[2], selected key frames are encoded in luminance only at

the encoder side. The scheme used, was integrated into

MPEG-2 with the chrominance added to the selected

luminance frames at the decoder side.

This work in progress presents work done to improve

computational time required to colour an image from a

video sequence. The colourisation algorithm is offloaded to

the programmable GPU, for real time computing.

II. THEORY

The background theory used to colourise the frame is

based upon an approach used by Hertzmann et. al. [3],

which involves image comparisons. In image analogies

work done by Hertzmann et. al. [3] a training set is used to

setup a database. This database contains features which are

used to determine the best match as well as the desired

output. In order to determine the desired colours of the

output image, a dataset needs to be trained initially. This

training set consists of the input image 𝐴 and the desired

output image 𝐴′ which has the desired characteristics

respectively. The input test image 𝐵 which needs to be

matched to the database is the image to be synthesised into

𝐵′ . The nearest pixel match found in the database is used as

the desired output.

The features used to determine the best match is the

luminance channel only. The number of incorrect matches

when searching the whole database for a match quickly

presents a problem. A neighbourhood is constructed for

each lookup, when exact match test fails. In setting up a

neighbourhood, performance is improved since the possible

candidates are narrowed down to the most likely.

The luminance as determined directly from the 𝑅𝐺𝐵

colour space is linearly dependant on 𝑅𝐺𝐵. Thus selecting

the best match will result in a slightly different output than

required. These differences are image artifacts and intensity

differences which result in an output that does not have the

same texture as the test image 𝐵. It is for this reason that

the Υ𝐶𝑟𝐶𝑏 colour space is used as an alternative; which is

acceptable as this colour space is commonly used in video

codec's. Then the luminance remains the same between the

test image 𝐵 and the synthesised output image 𝐵′ , resulting

in the same image intensity only with chrominance added.

A. Algorithm

The database is determined from 𝐴 and 𝐴′ , the

neighbourhood 𝒩 for each pixel is constructed using pixels

𝜌 in an image 𝒮, 𝒩 = 𝒩𝑘 ∀ 𝑘 ∈ 𝒮} while 𝒩𝑘 is the set

of pixels neighbouring pixel 𝜌 where 𝜌 ≠ 𝒩𝑘 . The

luminance Υ from the input test image 𝐴 is transferred to the

synthesised output image. The feature outputs are 𝐶𝑟 and 𝐶𝑏

which is determined by the best match in the database. The

algorithm used to implement the colourisation is given in

pseudocode.

Image colourisation for compression using GPU

hardware

Vaughan H. Lee, Yuko Roodt and Willem A. Clarke

Department of Electrical and Electronic Engineering

University of Johannesburg, P. O. Box 524, Auckland Park

Tel: +27 11 4775904, Mobile: +27 74 1748554

email: {920401897.student,yukor, willemc}@uj.ac.za

III. EXPERIMENTAL RESULTS

The experimental images are HD 1080p frames taken

from the HD video sequence "touchdown_pass". In each

experiment, the training set A and A
'
 were taken from the

previous frame with the test input image the next frame in

the sequence, which is shown in Figure 1.

Figure 1: Left is luminance input image B, centre image is the

synthesised output image B' and the right image is the exact image.

The frame number is 551 from HD touchdown_pass.

The CPU implementation has a computational time of

several minutes, while the GPU implementation is in the

order of 0.0227s for the complete 1080p image. The errors

present in the synthesised image is attributed to rounding

errors in the colour space conversion from 𝑅𝐺𝐵 to Υ𝐶𝑟𝐶𝑏

and the temporal difference of the next sequential frame.

There are no motion vectors present to direct the optical

movement, thus regions with movement larger than the

neighbourhood will have large regions of error.

Furthermore, very few image artifacts are visible which is

verified by the cross-correlation coefficient of each channel

is 0.9512, 0.9537, 0.9336 for 𝑅𝐺𝐵 respectively. A scaled

top view of a surface plot depicts that the cross-correlation

matrix shows that 𝐵𝑒𝑥𝑎𝑐𝑡 and 𝐵′ ,𝑠𝑦𝑛𝑡 𝑕𝑒𝑠𝑖𝑠𝑒𝑑 are highly

correlated.

Figure 2: Experimental set 3, cross-correlation of colourised and exact

frame 551

The experiment was applied to a variety of images, the

results of sequential images are well matched using the

described algorithm. In the case of a large shift in the

images frames, the result is undesirable. The computational

speed of the algorithm implemented on the GPU is most

suitable to real-time application.

IV. CONCLUSION

This work in progress discusses a real-time colourisation

implementation on GPU hardware. The colourisation

technique is used to add the chrominance channels to the

monochrome luminance channel based on the closest match

in a neighbourhood. The synthesised output image is

constructed from a database. This database is constructed

from an initial training set, specifically using the Υ𝐶𝑟𝐶𝑏

colour space as features. The implementation has

outperformed the CPU implementation, with the GPU

implementation averaging 0.02s while the CPU

implementation takes several minutes.

This work suggests that the volume of full HD video can

be further reduced by dropping chrominance channels of

non-key frames while maintaining good performance. It is

in this light that a full 1080p HD video scheme can now be

implemented, continuing work based on these positive

results. In this scheme, processes like frame colourisation,

motion estimation, temporal interpolation and final

rendering will be offloaded to the GPU with other processes

continue computation on the CPU.

V. ACKNOWLEDGEMENTS

A special thanks for financial support from University of

Johannesburg. Finally, thanks to my dad, mom and God.

VI. REFERENCES

[1]. Guobin Shen, Guang-Ping Gao, Shipeng Li,

Heung-Yeung Shum, and Ya-Qin Zhang,

"Accelerate Video Decoding With Generic GPU",

IEEE Transactions on circuits and systems for

video technology, vol. 15, no. 5, May 2005.

[2]. Ritwik Kumar, Suman K. Mitra, "Motion

Estimation based Color Transfer and its

Application to Color Video Compression", 2008.

[3]. Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver,

Brian Curless, David H. Salesin, "Image

Analogies", 2001.

[4]. Mauricio Alvarez, Esther Salam´ı, Alex Ram´ırez

and Mateo Valero, "HD-VideoBench. A

Benchmark for Evaluating High Definition Digital

Video Applications",2007.

[5]. John D. Owens, Mike Houston, David Luebke,

Simon Green, John E. Stone, and James C. Phillips,

"GPU Computing", Proceedings of the IEEE, Vol.

96, No. 5, May 2008.

[6]. Cebrail Taşkin and Serdar Kürşat Sarikoz, "An

Overview of Image Compression Approaches",

The Third International Conference on Digital

Telecommunications, 2008.

Vaughan Lee received his B. Eng in electrical and

electronic engineering in 2009 from the University of

Johannesburg and is presently studying towards his Master

of Engineering degree at the same institution. His research

interests include video compression and signal processing.

𝑠𝑡𝑎𝑟𝑡 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚:
 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 ,𝑗 = Υ𝑖,𝑗

𝐵

 𝑔𝑖𝑣𝑒𝑛 Υ𝐵 , 𝑓𝑜𝑟 ∀ 𝜌 𝑖𝑛 𝐴 𝑑𝑜:
 𝑖𝑓 𝜌𝑖,𝑗 𝜖 Υ𝐵 == Υ𝑖,𝑗

𝐴

 𝑜𝑢𝑡𝑝𝑢𝑡𝑖,𝑗 = → 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

 𝑒𝑙𝑠𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑢𝑟𝑕𝑜𝑜𝑑,
 𝑓𝑜𝑟 ∀ 𝜌𝑖,𝑗 𝑖𝑛 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑕𝑜𝑜𝑑 𝒩𝑘 𝑑𝑜:

 𝑖𝑓 𝜌𝑖,𝑗 ≈ 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑢𝑟𝑕𝑜𝑜𝑑 𝒩𝑚,𝑛
𝑘 ,

 𝑜𝑢𝑡𝑝𝑢𝑡𝑖,𝑗 = 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑢𝑟𝑕𝑜𝑜𝑑 𝒩𝑚,𝑛
𝑘 → 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

 𝑒𝑙𝑠𝑒 𝑖𝑓 𝜌𝑖,𝑗 ≠ 𝑎𝑛𝑦 𝜌𝑖,𝑗 𝑖𝑛 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑢𝑟𝑕𝑜𝑜𝑑 𝒩𝑘

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑖𝑥𝑒𝑙 𝑛𝑜𝑡 𝑚𝑎𝑡𝑐𝑕𝑒𝑑 → 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑢𝑝𝑑𝑎𝑡𝑒

 𝑒𝑛𝑑

 𝑒𝑛𝑑

𝑒𝑛𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚

