Abstract
Du Plooy, A.P., 2002, Geochemistry and mineralogy of supergene altered manganese ore below the Kalahari unconformity in the Kalahari manganese field, Northern Cape Province, South Africa. M.Sc. dissertation (unpubl.), Rand Afrikaans University, P.O. Box 524, Auckland Park, 2006, 96pp.

It is the focus of the study to qualitatively describe and then quantify the mineralogical and geochemical changes associated with the supergene alteration of carbonate-rich braunite lutite (Mamatwan-type ore) immediately below the Kalahari unconformity along the southeastern suboutcrop perimeter of the Hotazel Formation in the Kalahari deposit. It was also the objective of this study to determine the timing and duration of supergene alteration.

Samples for polished thin sections were carefully selected from eight representative boreholes to be representative of all the lithostratigraphic zones and ore types. The thin sections were used to study mineralogy by means of reflected light microscopy and scanning electron microscopy. X-ray powder diffractometry on representative powder samples were used to study the mineralogy and geochemistry of the samples. Microprobe analyses were also performed on the representative samples. Finally the samples were submitted for 40Ar/39Ar geochronology.

In this supergene enrichment zone carbonates are leached (associated with an increase in porosity) and Mn$^{2+}$/Mn$^{3+}$-bearing minerals (kutnahorite, Mn-calcite an braunite) are altered to supergene Mn$^{4+}$-bearing mineral phases (todorokite and manganomelane) and minor quartz. This process upgrades ore from 38 wt% Mn to ore with more than 40 wt% Mn.

Element fluxes, enrichment and depletion of major and trace elements were quantified by mass balance calculations. Na$_2$O, K$_2$O, Sr, Ba, Zn and H$_2$O were enriched, while Mn$_3$O$_4$, Fe$_2$O$_3$, CaO, MgO, P, B and CO$_2$ were leached from the ore during supergene alteration. Results of this study suggest that the development of Post African I erosional surface may have taken place 45 Ma ago. The bottom of the weathering profile gives a well-defined
peak at ca. 5 Ma that may possible coincide with the development of Post African II erosional surface.

The major characteristics of the alteration process of the unaltered Mamatwan-type ore to supergene altered braunite lutite can be summarized as follow:

- Leaching of Mn carbonates and Mn$^{2+}$/Mn$^{3+}$-oxides.
- Formation of Mn$^{4+}$-oxyhydroxides and quartz.
- Decrease in relative density of the ore.
- Increase in porosity of the ore.
- Leaching of Mn$_3$O$_4$, Fe$_2$O$_3$, CaO, MgO, P, B, CO$_2$.
- Enrichment of Na$_2$O, K$_2$O, Sr, Ba, Zn, H$_2$O.

Chemical weathering processes along the Cenozoic Kalahari unconformity appear to have affected the manganiferous lithologies of the Hotazel Formation from 45 Ma onwards to 5 Ma. The weathering front processes very slowly through the Mn-rich braunite lutite (<10m in 40 Ma; <0.25m/Ma); producing a very uniform and microcrystalline supergene mineral assemblage with distinct characteristics.
List of figures

Figure 1.1. A: Geographic position of the KMF in the Northern Cape Province. B: Locality map illustrating the approximate size and outline of the five erosional relicts of the Hotazel Formation.

Figure 1.2. Percentage of manganese ore production from different countries in the world in 2000 (data from Mottie, 2001).

Figure 1.3. Change in Mn ore production and unit value for Mn over the last 20 years.

Figure 1.4. Plan view of the study area to illustrate borehole localities of present study (REX2) and previous studies, marked by G (Preston, 2001).

Figure 2.1. Stratigraphic correlation of the Transvaal strata and overlying red beds between the Transvaal and Griqualand West regions.

Figure 2.2. Simplified stratigraphic column of the central part of the Voëlwater Subgroup (not to scale) and an impression of the lithostratigraphic zoning of the Lower Mn body.

Figure 2.3. Lithostratigraphic subdivision of the Lower manganese ore bed at Mamatwan mine (modified after Preston, 2001).

Figure 2.4. NE-SW section through the southern part of the KMF, illustrating the southwestern dip of the strata and the suboutcrop of the Lower manganese body against the Kalahari Formation (modified after Beukes and Smit, 1987).

Figure 2.5. Map illustrating the position of the studied boreholes (REX), previous boreholes, marked by G (Preston, 2001), Lower manganese ore bed and important structures present in the study area.
Figure 2.6. Schematic illustration of the suboutcrop of the Hotazel Formation against the Kalahari Formation and the associated supergene alteration in the study area.

Figure 2.7. NS section to illustrate the influence of the Kalahari unconformity on the presence of lithostratigraphic zones on the eastern suboutcrop perimeter of the Lower Mn body.

Figure 2.8. WE section of eastern suboutcrop perimeter of the Lower Mn body to illustrate the influence of the Kalahari unconformity on the position of the suboutcrop of different of lithostratigraphic zones along the eastern suboutcrop perimeter of the Lower Mn body. Note that the black zones are supergene altered Mn ore, logged by S.J. van der Merwe from percussion drill holes.

Figure 2.9. 3-D model of the Lower manganese body in the study area, i.e., from Mamatwan Mine in the south to Smartt Mine in the North.

Figure 2.10. North-south section of the Lower manganese body through the study area using selected drill cores (ref. Fig. 2.5).

Figure 2.11. Two East-west sections through the study area illustrate gradual thickening of most lithostratigraphic zones in easterly direction.

Figure 2.12. Photomicrographs of representative samples of unaltered, weakly supergene altered and strongly supergene altered braunite lutite.

Figure 2.13. Example of strongly supergene altered M-zone dissected by stockwork of veinlets filled by calcite. This is characteristic of the immediate contact, between the Mn-ore bed and the Kalahari Formation.

Figure 3.1. SEM photomicrographs (backscatter electron images) illustrating petrographic and textural characteristics of unaltered protore (braunite lutite).
Figure 3.2. SEM photomicrographs (backscatter electron images) illustrating petrographic and textural characteristics of unaltered protore (braunite lutite).

Figure 3.3. SEM photomicrographs (backscatter electron images) illustrating the petrographic and textural characteristics of weakly supergene altered braunite lutite.

Figure 3.4. SEM photomicrographs (backscatter electron images) illustrating petrographic and textural characteristics of strongly supergene altered braunite lutite.

Figure 3.5. SEM photomicrographs (backscatter electron images) illustrating petrographic and textural characteristics of strongly supergene altered braunite lutite.

Figure 4.1. Map illustrating the exact localities of the drill cores sampled for detailed geochemical investigations.

Fig. 4.2. Contour maps of the M(A), C(B) and N(C)-zones that illustrate the significant increase of Mn$_3$O$_4$ concentrations immediately adjacent to the suboutcrop of the Lower Mn orebody against the Kalahari Formation.

Figure 4.3. Whole rock geochemical analyses for the V, W, X1, X2, X3, Y and Z lithostratigraphic zones of an unaltered reference borehole (Rex 44).

Figure 4.4. Whole rock geochemical analyses for the M, C, N, B and L lithostratigraphic zones of an unaltered reference borehole (Rex 44).

Figure 4.5. A-D: Lateral geochemical trends observed from south (G558) to north (Rex 16) in the study area for unaltered braunite lutite of the C-zone. E-H: Geochemical trends observed for the M-Zone with increasing degree of supergene alteration.
Figure 4.6. A-B: Lateral geochemical trends observed with increasing degree of supergene alteration. C-H: Geochemical trends observed for C-Zone with increasing degree of supergene alteration.

Figure 4.7. A-F: Geochemical trends observed for the N-Zone with increasing degree of supergene alteration.

Figure 4.8. Plot illustrating the range of whole rock densities determined for unaltered, weakly and strongly supergene altered braunite lutite.

Figure 4.10. Plots illustrating absolute gains and losses in the M, C and N-zones for strongly supergene altered boreholes (Rex 2 and 24).

Figure 4.11. Schematic summary illustrating the enrichment and leaching of major and trace elements as a result of meteoric water influx into the M, C and N-zones of the lower Mn orebody along the Kalahari suboutcrop of the Hotazel Formation.

Figure 5.1. Lithostratigraphy of drill core Rex 2 sampled for this study. Only the central (economic, zones M, C, N) and lower (subeconomic, zones B, L) portions of the lower manganese orebody are preserved below the Kalahari calcrite.

Figure 5.2. Photomicrographs illustrating characteristic petrographic features of supergene altered manganiferous lithologies in drill core Rex 2.

Figure 5.3. Ternary plot of the Na$_2$O+K$_2$O, CaO+MgO and BaO contents of the matrix, cross-cutting veinlets, whole rock composition of REX and an unaltered sample (Unalt.) of the M, C and N-Zones.
Figure 5.4. (A-F): Step heating spectra for three distinct todorokite and manganomelane grains of two representative samples from the M-zone. (G-O): Step heating spectra for three distinct todorokite and manganomelane grains of three representative samples from the C-zone.

Figure 5.5. (A-I): Step heating spectra for three distinct todorokite and manganomelane grains of three representative samples from the N-zone. (J-L): Step heating spectra for three distinct todorokite and manganomelane grains of one representative samples from the B-zone.

Figure 5.6. Ideogram illustrating all ages obtained for the M, C and N-zones.

Figure 6.1. Mineral paragenetic table illustrating the effects of diagenesis, low-grade metamorphism and supergene alteration on braunite lutite (modified from Preston, 2001).

Figure 6.2. Schematic summary illustrating the enrichment and leaching of major and trace elements as a result of meteoric water influx into the M, C and N-zones of the Lower Mn orebody along the Kalahari suboutcrop of the Hotazel Formation. The remaining elements are immobile. Note that absolute gains and losses are given in brackets.

Figure 6.3. Lithostratigraphy of drill core Rex 2 sampled for this study.

Figure 6.4. Existing concepts for Post-Gondwana landscape evolution in Southern Africa by Beukes et al. (1999), Burke (1996), and Partridge and Maud (1987) (diagram modified after Beukes et al. 1999).

Figure 6.5. Summary of the characteristics of unaltered and strongly supergene altered manganese ore of the M, C and N lithostratigraphic zones along the eastern suboutcrop perimeter of the Lower manganese orebody against the Cenozoic Kalahari Formation.
List of tables

Table 1.1 World manganese ore reserves, production and exports in 2000 (after Mottie, 2001).

Table 3.1 Mineralogy of major lithostratigraphic zones present in unaltered (Rex 44), weakly (Rex 70) and strongly supergene altered ore (Rex 2).

Table 4.1 Major element geochemistry of representative drill core samples illustrating characteristic changes in concentration that are associated with increasing degree of supergene alteration (all data in wt%).

Table 4.2 Trace element geochemistry of representative drill cores illustrating characteristic variations with increasing degree of supergene alteration (all data in ppm).

Table 4.3 Density ranges of unaltered, weakly and strongly supergene altered braunite lutite.

Table 4.4 Absolute and relative changes of concentrations of selected major and trace elements associated with supergene alteration in reference boreholes (Rex 2 and Rex 24).

Table 4.5 Absolute and relative changes of concentration of selected major and trace elements during supergene alteration (reference boreholes, Rex 2 and Rex 24).

Table 5.1 Mineral composition of each lithostratigraphic zone in drill core Rex 2. Abbreviations: Brnte = Braunite, Hem = Hematite, Todo = Todorokite, Jacob = Jacobsite, Man = Manganomelane, Pyrolusite = Pyr. xxxx = Dominant phase (> 50%), xxx = Major phase (20 – 50%), xx = Minor phase (5 – 20%), x = Trace phase (< 5%).
Acknowledgements

Firstly, I can only praise my Father in heaven for strength and will-power.

- I would like to thank the following people and organizations for their contributions to this thesis.
- Prof. J. Gutzmer for his professional advice, guidance and never-failing patience.
- Prof. N.J. Beukes for the spirited guidance and the opportunity to do this project.
- My parents and girlfriend, Anneri who inspired and kept me motivated during the course of this study.
- Staff and students at the Geology Department, RAU.
- The SAMANCOR staff in Hotazel, especially Solly van der Merwe and Oscar van Antwerpen for the geological knowledge I have gained from them and for financial support from the company.
- Mintek for whole rock geochemical analyses.
- Dr. P. Vasconcelos for the opportunity to do 40Ar/39Ar-analyses in the Geology Department of the University of Queensland, Brisbane, Australia.