Contents

1 INTRODUCTION ... 1
 1.1 RESEARCH OBJECTIVE .. 4
 1.2 OUTLINE OF THESIS .. 4

2 DRILLING .. 6
 2.1 DRILL GEOMETRY ... 6
 2.2 DRILL POINT GEOMETRIES .. 8
 2.3 CHIP FORMATION IN DRILLING ... 11

3 BURR FORMATION PROCESS IN DRILLING 14
 3.1 INTRODUCTION ... 14
 3.2 BURR INITIATION AND DEVELOPMENT ... 15
 3.3 FINAL STAGES IN BURR FORMATION .. 16

4 ACOUSTIC EMISSION TECHNIQUE ... 18
 4.1 INTRODUCTION TO ACOUSTIC EMISSION 18
 4.2 ACOUSTIC EMISSION REAL TIME MONITORING 19
 4.3 ACOUSTIC EMISSION SIGNALS .. 20
 4.4 TYPICAL ACOUSTIC EMISSION RESULTS AND EXAMPLES 21

5 EXPERIMENTAL SETUP .. 30
 5.1 CONCEPT OF EXPERIMENTS ... 30
 5.2 MEASUREMENT CRITERIA ... 30
 5.2.1 WORKPIECE MATERIAL AND DRILL 31
 5.2.2 DATA RECORDING .. 32
 5.3 INSTRUMENTATION AND SENSOR .. 33
 5.3.1 DRILL PRESS ... 34
 5.3.2 AE COUPLER AND AE SENSOR ... 34
 5.3.3 ANALOG TO DIGITAL (ADC) CONVERTER 36
List of figures

2.1 Illustration of terms applying to twist drills .. 6
2.2 Drill Chuck ... 7
2.3 Straight Shank Drill .. 8
2.4 Taper Shank Drill .. 8
2.5 Characteristics & Consequences of Relief Angle .. 9
2.6 Point angle ... 9
2.7 Drill point Geometry ... 10
2.8 Drill’s Web .. 11
2.9 Chip formations in drilling .. 12
2.10 Six Types of Chips ... 13

3.1 Formation of a rollover burr at exit in drilling with a conventional drill 14
3.2 Stages in burr formations .. 15
3.3 Burr initiation from simulation and drilling plasticine 16
3.4 Typical cap formation ... 16
3.5 Irregular burr cap formation for large uniform burr and a cap in an almost burr-less hole .. 17

4.1 Transient AE signal .. 20
4.2 Continuous AE signal ... 20
4.3 Typical acoustic emission signal during drilling (Material = AISI 1015 steel, material thickness = 10 mm, Drill diameter = 8 mm, Drill speed = 450 rpm, feed = 0.12 mm) .. 21
4.4 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 450 rpm, feed = 0.03 mm/rev, drill diameter = 10 mm) .. 22
4.5 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 450 rpm, feed = 0.05 mm/rev, drill diameter = 10 mm)………………………………………………..23

4.6 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 450 rpm, feed = 0.08 mm/rev, drill diameter = 10 mm)………………………………………………..23

4.7 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 450 rpm, feed = 0.12 mm/rev, drill diameter = 10 mm)………………………………………………..24

4.8 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 450 rpm, feed = 0.20 mm/rev, drill diameter = 10 mm)………………………………………………..25

4.9 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 450 rpm, Feed = 0.31 mm/rev, drill diameter = 10 mm)………………………………………………..24

4.10 Typical initial acoustic emission peak during the drilling………..25

4.11 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 355 rpm, feed = 0.03 mm/rev, drill diameter = 10 mm)………………………………………………..26

4.12 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 560 rpm, feed = 0.03 mm/rev, drill diameter = 10 mm)………………………………………………..26

4.13 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 710 rpm, feed = 0.03 mm/rev, drill diameter = 10 mm)………………………………………………..27

4.14 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 900 rpm, feed = 0.03 mm/rev, drill diameter = 10 mm)………………………………………………..28

4.15 Typical acoustic emission time-domain signals (material = grade 6082 aluminium, material thickness = 10 mm, Speed = 1120 rpm, Feed = 0.03 mm/rev, drill diameter = 10 mm)………………………………………………..28

4.16 Comparisons of AE RMS response towards increasing feedrate as either feed or speed increases…………………………………………………………..29
5.1 Work-plate and drill ... 31
5.2 Photo of Experimental workplace .. 33
5.3 Kovosvit VO32 radial drilling machine .. 34
5.4 AE Sensor 8152 B1 .. 35
5.5 Piezotron AE Coupler .. 35
5.6 Average sensitivity of the AE sensor ... 35
5.7 ADC 200 converter .. 36
5.8 Experimental Setup arrangements .. 37
5.9 Mounting of the AE Sensor on the work-piece material ... 38
5.10 The plate showing the sensor position and mounting screw hole 39
5.11 Typical AE RMS curve (Speed=900 rpm, Feed = 0.03 mm/rev, Material AISI 1015 steel) ... 40
5.12 Typical AE RMS curve (Speed=900 rpm, Feed = 0.03 mm/rev, Material AISI 1015 steel) ... 40

6.1 Typical burrs produced when drilling grade 6082 Aluminium work material .. 44
6.2 Typical Acoustic Emission with burrs (Speed=450 rpm, Feed=0.05mm/rev, drill diameter 8 mm, Material=6082 Aluminium) 45
6.3 Typical Acoustic Emission with burrs (Speed=450 rpm, Feed=0.05mm/rev, drill diameter 10 mm, Material=6082 Aluminium)46
6.4 Typical Acoustic Emission with burrs (Speed=450 rpm, Feed=0.05mm/rev, drill diameter 12 mm, Material=6082 Aluminium)47
6.5 Typical AE RMS with moving minimum function (Speed=450 rpm, Feed=0.05mm/rev, drill diameter = 8 mm, Material=6082 Aluminium)48
6.6 Typical AE RMS with moving minimum function (Speed=450 rpm, Feed=0.05mm/rev, drill diameter=10 mm, Material=6082 Aluminium)49
6.7 Typical AE RMS with moving minimum function (Speed=450 rpm, Feed=0.05mm/rev, drill diameter=12 mm, Material=6082 Aluminium)49
6.8 Comparison of AE rms as speed is increased, Material = 6082 grade aluminium (with burrs at the end of drilling). ..50
6.9 Comparison of AE rms as drill diameter is increased, Material = grade 6082 aluminium (with burrs at the end of drilling).51
6.10 Comparison of AE rms as feed is increased, Material = grade 6082 aluminium (with burrs at the end of drilling).51
6.11 Typical burrs produced when drilling AISI 1015 steel51
6.12 Typical Acoustic Emission with burrs (Speed=450 rpm, Feed=0.05mm/rev, drill diameter 8 mm, Material=AISI 1015 Steel)...53
6.13 Typical Acoustic Emission with burrs (Speed=450 rpm, Feed=0.05mm/rev, drill diameter 10 mm, Material= AISI 1015 Steel) 54
6.14 Typical Acoustic Emission with burrs (Speed=450 rpm, Feed=0.05mm/rev, drill diameter 12 mm, Material=AISI 1015 Steel) 55
6.15a Moving minimum function plot of AE RMS VS Depth of Drilling, Material = AISI 1015 steel, speed = 450 rpm, feed = 0.05 mm/rev, 8 mm diameter drill (with burrs at the end of drilling).................................56
6.15b Moving minimum function plot of AE RMS VS Depth of Drilling, Material = AISI 1015 steel, speed = 450 rpm, feed = 0.05 mm/rev, 10 mm diameter drill (with burrs at the end of drilling).................................56
6.16 Moving minimum function plot of AE RMS VS Depth of Drilling, Material = AISI 1015 steel, speed = 450 rpm, feed = 0.05 mm/rev, 12 mm diameter drill (with burrs at the end of drilling).................................57
6.17 Comparison of AE RMS as speed is increased, Material = AISI 1015 steel, Feed = 0.03 mm/rev (with burrs)..58
6.18 AE RMS VS Depth of Drilling as speed is increased, Material = AISI 1015 steel, Feed = 0.12 mm/rev (with burrs).................................58
6.19 AE RMS VS Depth of Drilling as drilling diameter is increased, Material = AISI 1015 steel (with burrs)..59
6.20 AE RMS VS Depth of Drilling as feed is varied, Material = AISI 1015 steel (with burrs)...59
6.21 Typical example of Comparison between AE RMS VS Drilling depth curves during the drilling aluminium and steel plates (Speed = 900 rpm, 8 mm drill diameter, feed = 0.03 mm/rev).................................60
6.22 Typical experimental curves when drilling with and without burrs,
(material = AISI 1015 steel, speed = 355 rpm, feed = 0.03 mm/rev,
drill size = 8 mm)...61

6.23 Typical experimental curves when drilling with and without burrs,
(material = grade 6082 aluminium, speed = 355 rpm, feed =
0.03mm/rev, drill size = 8 mm)..62

6.24 Typical AE RMS VS Depth of drilling when feed is varied. (Material
= AISI 1015 steel, Drill size = 8 mm, Speed = 355 rpm).................63

6.25 Typical AE RMS VS Depth of drilling when feed is varied. (Material =
grade 6082 aluminium, Drill size = 8 mm, Speed = 355 rpm)..........63

6.26 Typical AE RMS VS Depth of drilling when speed is varied. (Material
= AISI 1015 Steel, Drill size = 8 mm, feed = 0.03 mm/rev)..............64

6.27 Typical AE RMS VS Depth of drilling when speed is varied. (Material
= grade 6082 aluminium, Drill size = 8 mm, feed = 0.03 mm/rev).....65

6.28 Typical AE RMS VS Depth of drilling when drill diameters are varied.
(Material = AISI 1015 steel, speed = 710 rpm, feed = 0.03 mm/rev) 66

6.29 Typical AE RMS VS Depth of drilling when drill diameters are varied.
(Material = grade 6082 aluminium, speed = 710 rpm, feed = 0.03
mm/rev)...66

6.30 Fourier Transforms : Power Spectral Density and Spectrum (355
rpm)...67

6.31 Fourier Transforms : Power Spectral Density and Spectrum (450
rpm)...68

6.32 Fourier Transforms : Power Spectral Density and Spectrum (710
rpm)...68

6.33 Fourier Transforms : Power Spectral Density and Spectrum (900
rpm)...69

6.34 Frequency VS Speed Curve..69

6.35 AE levels increases inconsistently when burrs are formed. (Material =
Steel, Speed = 710 rpm, feed = 0.03 mm/rev, 10 mm drill size)........70

6.36 AE levels increases consistently when burrs are not formed. (Material =
Steel, Speed = 710 rpm, feed = 0.03 mm/rev, 10 mm drill size)........71
7.1 Locus of maximum AE RMS (Material = grade 6082 aluminium speed = 450 RPM, 8 mm diameter drill; with burrs).................................73
7.2 3D mesh of aluminium plate drilled at 450 rpm, 8 mm drill diameter (With burrs)...73
7.3 Contour plot showing the locus of maximum of AE RMS (material = aluminium, speed = 450 rpm, 8 mm drill diameter; With Burrs........ 74
7.4 3D mesh of aluminium plate drilled (With burrs) at 355, 450 and 900 rpm as feed is varied, 8 mm drill used...74
7.5 Drill - Workpiece interaction and subsequent AE RMS signal............75
7.6 Classification of drilling conditions (Material = AISI 1015 steel, 8 mm drill diameter)..78
7.7 3D mesh showing steel work-piece's AE RMS when drilling with burrs (8 mm drill diameter)...79
7.8 3D mesh showing a steel work-piece plot when drilling without burrs (8 mm drill diameter)...79
7.9 Flowchart examples for a basic burr prediction model.........................80
7.10 Comparisons between empirical and experimental data drilled at 21.3 mm/min (speed = 710 rpm, feed = 0.03 mm/rev).........................81
7.11 The effects of drill diameter when drilling AISI 1015 steel.................82
7.12 The effects of drill diameter when drilling 6082 aluminium...............83
7.13 More visibility with improved accuracy...84

8.1 AE RMS when drilling aluminium plate at 140 (mm/min),.................86
8.2 Sampling rate VS feed-rate..87

A1 Pre- Experimental Instruments with an instrument designed for calibration of the microphone on the background...............................92
List of Tables

5.1 Corrected experimental values and drilling depth conversion
(Steel work-piece: 90 rpm, 0.05 mm/rev, 12 mm drill diameter) ... 32

7.1 Empirical values for model constants - 8 mm drill ... 77

B1 Empirical values for model constants - 10 mm drill ... 98

B2 Empirical values for model constants - 12 mm drill ... 98

B3 Comparable relationship during drilling at different distances from the sensor 100