DECLARATION

I declare that this dissertation is my own original work. It is being submitted for the degree of Master of Technology in the University of Johannesburg. It has not been submitted before for any award or degree or examination in any other University. All external sources drawn on have been duly acknowledged.

ANETTE LEONOR TELMO THOMPSON

DATE _____________________________
ABSTRACT

Footwear is manufactured from foot forms or moulds known as “lasts”, based on certain measurements of the feet for whom the footwear is intended. Measurement or morphometric studies of the foot in other populations reveal differences due to genetic, ethnic and/or racial differences. Most last measurements used in the South African (SA) footwear industry are based on the British (UK) standard and assume an average fit for the entire population. No three dimensional (3-D) measurement data existed on the SA female foot that was statistically representative of all major ethnic groups of the female population. This was needed to test the current applicability of the UK standard, in light of previous findings that 80% of a random sample of South African women reported foot pathology ascribed to ill-fitting footwear. Further, this would address a suggestion that foot measurements might be non-linear in grading between small size individuals (size 3, 4 and 5) and large size individuals (size 8, 9 and 10).

This study essentially consists of three parts. First, a preliminary study undertook to find or create a suitable and affordable method of 3-D input, not only to obtain morphometric measurements but also to capture the topography of the weight bearing foot for future research and development of contoured foot beds for industry. Second, a comparison of specific measurements from a UK size 4 last and the corresponding foot measurements from a sampled population of size 4 foot length was performed, in order to determine what percentage of women would fit the footwear derived from such a last. Third, a comparison of mean values was carried out between data from participants of all sizes scaled down arithmetically to UK size 4 length, and data from actual size 4 participants, in order to explore whether the size 4, occurring as it does near the lower end of the size range, could still be representative of the proportional measurements for sizes 3 to 10. The mean values of this second scaled size 4 group were also compared to the UK size 4 last measurements.

The first part of the study utilized the resources of collaborative partners to locate 3-D hardware and software. Experimentation with compounds isolated a suitable impression material and platform designs were conceived to facilitate the data capture method developed. The invented method was awarded patent rights. The second part of the study
used the method developed from the preliminary study to conduct measurements. 3-D Laser scanning in combination with manual measurement for validation, by convenience sampling of each of 510 active women aged 21 to 69, of differing ethnic origins, in two major urban regions, yielded 13 foot measurements of each participant. Last measurements were captured by means of comparable laser scanning of a UK size 4 last. In the second part of the study, eight of the comparable measurements for size 4 feet and the last were compared for accuracy of fit. The third part of the study compared mean values between data from non size 4 participants scaled down arithmetically to UK size 4 length, and data from actual size 4 participants.

Part one of the study successfully developed and patented a new, portable, low-cost method which can be used to measure either a last or foot in 3-D for any footwear consumer group. Results of the metric study in part two indicate that four dimensions of the industry standard last do not fit the corresponding four dimensions of the average foot measured, namely forefoot girth, forefoot width, heel width and minor foot length (heel to fifth toe). More than 75.6% of participants from every ethnic group displayed tread girths larger than that of the last. These findings have serious implications since deficit fit in any of these four dimensions impacts negatively on foot health and function within the shoe. As such, results could not support the null hypothesis that the shoe fits the foot. Results in the third part of the study yielded similar mean values for measurement parameters between the two groups of data, indicating that the mean measurements for a size 4, even though it is placed near the lower end of the size range, can be representative of the mean scaleable measurements for sizes 3 to 10 but only for the length grade.

In conclusion, the study developed and patented a new method for a scientific process to record the weight bearing foot in 3-D. It produced the first national database of 3-D measurements of a female population on the African continent. Outcomes included new prototypes, innovation and technology transfer to industry. The study prompted the development of new footwear by the manufacturing industry partner, utilizing information gained from the study. The study has given impetus to continuing research on the African foot.
ACKNOWLEDGEMENTS

This study was funded by Michelle Footwear (Pty) Limited, the South African Footwear and Leather Industries Association (SAFLIA) which represents more than 80 footwear manufacturers, the South African Government’s Department of Trade and Industry via the THRIP (Technology and Human Resources in Industry Programme) Fund, and the Research Fund of the University of Johannesburg (formerly Technikon Witwatersrand).

Most special thanks are due to Mike Gedye of Michelle Footwear, whose dogged yet inspired determination to find ways to succeed where others have failed, whose vision of “oomph” for the foot mirrors my own and whose astute and keen business intuition makes everything possible.

Technical collaboration for this project was supplied pro bono at cost for academic purposes by Aclarus Corporation (United States of America), Southern Air Repair (United States of America), ARANZ (Applied Research Associates New Zealand) who wrote the custom software modules, as well as Robert McNeel and Associates (United States of America) who provided Rhino modeling software. Academic discounts were gratefully accepted from Polhemus of Colchester, Vermont USA who provided the basic scanning hardware and the 3-D positioning hardware, while Richard Mason of Elro J Braak supplied phenolic foam at cost for academic study purposes. Joanne and her team at Paradigm Plastics are thanked for their wizardry, as is Walter Bacchio at Walbac Tool and Die. Victor Pataca of Aclarus Corporation is due the most special thanks for his enthusiasm, vision and motivation far beyond the superb technical support received during the project.

I am most grateful to Leo and Linda Vandenheede and staff of Fanci-Form Last Manufacturers, as well as Eddie Wilson and Ricky Shunmugam of PMC Group (John Whittle Components), who continue to give freely of their time and contribute enormously with explanations, consultations and encouragement. I am also grateful to my new colleagues in industry, in particular Pauline Law, for their friendship and encouragement.
Thank you to my husband Ron for encouragement and to all who spontaneously and generously helped to locate books and reference material: in particular, Victor Pataca, Andrew and Lesley Clarke, Bernhard Zipfel, Saramarie Eagleton, Antonet Davis, Richard Kushlik, Ken Riches, Alan Hornby, Ian Gordon and Dr. Barry Block (USA).

I remain indebted to all the dedicated people who continue to pour their energies into our higher education institutions. In particular, I wish to thank my supervisors, mentors and friends, Saramarie Eagleton and Doctor Bernhard Zipfel, for their encouragement beyond the call of duty; to Professor Thomas Auf der Heyde and Reetha Nundulall of the University of Johannesburg Research department for their patience and encouragement; to Professor Andre Swart; to Professor Vic Exner; to Henda Kleynhans for patience and generosity of spirit; to Sonya Beukes and Professor Anna Nolte of the department of Nursing Science at Kingsway Campus for enthusiastic facilitation; to Nelis Potgieter and Adam Martin, for statistics wizardry at Statkon; to Doctor Pieter Els of the University Clinic; to Betha Mutyaba and Professor Leana Els at the University of Kwazulu Natal and to all Deans and Heads of departments at the participating Universities for their assistance. Lynette Birch of John Dunn House in Wentworth, Durban gave cheerful and uplifting help in facilitating and promoting foot measurement among residents of the home as well as participants from the surrounding community. Thanks are also due to members of the Proudly South African initiative, in particular Louis Korkie and Vona Kievet of the South African Broadcasting Association, Norman Govender of Rhema Church; and to Janet Cooper, Mark Hope and Radesh Maharaj of South African Airways for their co-operation and facilitation during data collection at their respective organizations.

Two cheerful young women assisted during the physical process of data collection in two provinces; thank you to Asma Rajah in Gauteng; and to Jerusha Gengan in Kwazulu-Natal.

Lastly, I am grateful and truly in awe of the hundreds of South African women who unhesitatingly stepped forward when asked to bare their soles in the name of science.

Anette Leonor Telmo Thompson
Durban, 2006.
GLOSSARY

abduction. Motion away from the midline of the foot that occurs in the transverse plane around an axis that lies 90 degrees to the transverse plane and at the intersection of the coronal and sagittal planes.

adduction. Motion towards the midline of the foot that occurs in the transverse plane around an axis that lies 90 degrees to the transverse plane and at the intersection of the coronal and sagittal planes.

angle of gait. The angle which the feet assume relative to the body’s line of progression during gait.

allowance. In adult shoes, the additional provision in size for foot stretch or expansion on weight bearing. Also the extra dimension allowed on the last for foot stretch or expansion on weight bearing. In fitting children’s shoes, the extra length or width allowed for foot growth.

anthropometry. The branch of human science that deals with body measurements.

azimuth. An angle of rotation, used in conjunction with the angle of elevation, to define the apparent position of an object in space, relative to a specific observation point in 3-D orientation. See also elevation.

back cone. This is the portion of the cone section on the last between the “v” cut or thimble in the centre and the back end of the last. See also back part.

back curve. See heel curve.

back part. Term generally used in South African industry for the back cone of a last.

ball. In the foot, the ball comprises the heads of the five metatarsal bones and the surrounding tissue. On the shoe, the ball is the corresponding area or section. Along with the heel, the ball represents one of two primary weight bearing and tread sections of the foot and shoe.

ball girth. A measurement around the ball of the foot or last to determine shoe and last width and volume allowance inside the shoe. Also known as joint girth; a key measurement in last making.

base of gait. The closest width between the medial malleoli during the midstance phase of gait.

CAD Abbreviation for computer aided design.

CAM Abbreviation for computer aided manufacture.
CCD camera. A camera that uses a micro-manufactured silicon wafer (rather than a piece of film) to receive incoming light onto an array of linked (coupled) capacitors or photosites to capture picture elements or “pixels”. The silicon integrated circuit wafer or “chip” is called a charge-coupled device (CCD) and is used in high speed, high resolution applications such as digital photography, photometry, optical spectroscopy and astronomy.

clip. The tightness of shoe fit on the last around the topline; to fit tightly or snugly on the last; the gripping action of a shoe on the foot by virtue of it’s shaping and dimensions.

CMM Abbreviation for coordinate measuring machine.

cone. 1) The part of the last corresponding to the foot’s instep; important in shaping the shoe for proper fit. 2) The upper and centre portion of the last, divided into two sections, front and back cones. See also front cone and back cone.

coronal. The frontal plane of alignment of the body or parts thereof.

dorsal. Upper surface; in scanning a weight bearing foot, it is the visible surface from the edge of the surface on which the foot is resting, over the upper surface to the ankle region.

dorsiflexion. Motion towards the body that occurs in the sagittal plane around an axis that lies 90 degrees to the sagittal plane and at the intersection of the coronal and transverse planes.

elevation. An angle used, in conjunction with the azimuth angle, to define the position of an object in space relative to a specific observation point in 3-D orientation. See also azimuth.

euclidean That portion of geometry dealing with solids, as opposed to plane geometry. Solid geometry is concerned with polyhedra, spheres, three-dimensional solids, lines in three-space and planes.

eversion. Motion away from the midline of the body, occurring in the coronal plane around an axis that lies 90 degrees to the coronal plane and at the intersection of the transverse and sagittal planes.

fashion allowance. In adult shoes, the allowance of one part of the last for a fashion detail, for example, extra long toe box for elongated pointed toe escarpine styles.

feather edge. A very thin sole edge used mostly on women’s fashion shoes. The term also applies to some shoe components such as counters. See also skived edge.

feather line. 1) A reinforcement around the sole edge between sole and upper; 2) on the last, the line of small tacks placed around the rim where upper and bottom meet on the finished shoe.
flare. To curve or contour, as with an inflare or outflare last. Used either as a styling feature or for therapeutic shoe design for a foot correction.

flexion. The bend action of the foot across the ball, or of a shoe or outsole across the ball and vamp; the degree of the flex action is an indication of the functional normalcy of the foot or the walking ease of the shoe.

front cone. The portion of the last cone between the V-cut or thimble in the centre and the vamp point on the top surface behind the toes. See also toe part and cone.

gait. Term used to describe the manner of human locomotion.

gait cycle. Sequence of movement phases that make up two sequential steps in human locomotion. Two main phases are “Stance” (in which the foot is planted on the support surface and takes weight) and “Swing” (in which the foot is non weight bearing and is moving forward towards the next heel strike) The gait cycle begins when one foot contacts the ground and ends when that foot contacts the ground again. Thus, each cycle begins at initial contact with a stance phase and proceeds through a swing phase until the cycle ends with the limb's next initial contact. Stance phase accounts for approximately 60 percent, and swing phase for approximately 40 percent, of a single gait cycle. Each gait cycle includes two periods when both feet are on the ground. The first period of double limb support begins at initial contact, and lasts for the first 10 to 12 percent of the cycle. The second period of double limb support occurs in the final 10 to 12 percent of stance phase. As the stance limb prepares to leave the ground, the opposite limb contacts the ground and accepts the body's weight. The two periods of double limb support account for 20 to 24 percent of the gait cycle's total duration.

girth. Any of several circumference measurements taken on the last, such as around the ball, waist and instep; or similar measurements on the foot. Girth allowance on the last differs depending on needs, e.g. closed tab boot has a wider girth allowance than an open tab boot.

GRF Abbreviation for ground reaction force; see ground reaction force.

ground reaction force. A force equal in magnitude and opposite in direction to the force that the body exerts on the supporting surface through the foot.

hallux. Plural halluces. Anatomical name for the big toe.

heel angle. The down slant or angle of the heel seat on which the heel of the foot rests.

heel. The raised component under the rear of the shoe, consisting of any of a wide variety of shapes, heights, styles and materials. The raised heel has origins dating back at least
3000 years and was used in a utility manner to prevent the feet of horsemen from slipping out of the stirrup, and also to increase the wearer’s stature and status. The modern high heel (two or more inches in height) dates back to the 16th century and has evolved into a primary fashion feature in a shoe for women.

heel curve. The back curve of a shoe from heel seat to the top rim to conform to the back curve of the foot. The curve shape varies in accord with heel height, style, or construction of the shoe or boot. The heel curve must be precise to avoid shoe slippage or biting at the heel. Also known as back curve.

heel pitch. The vertical slant or angle of the heel at the rear from heel seat to foot; not to be confused with the heel angle.

heel height. The height, floor to shank, measured at the heel breast. Heel height is measured in increments of one 8th of an inch. Hence an 8/8 heel is one inch, a 20/8 is 2 and a half inches, and so on.

heel seat. The flat or slightly cupped section of the shoe on which the foot’s heel rests; also the section of the shoe to which the heel is attached.

heel seat width. On the last, the width across the heel seat, rim to rim at the widest points; the greatest width across the heel seat on a line perpendicular to the centre line from the heel point. Also described as heel stick width.

instep. The top inner portion of the foot at its crest, formed by the articulations of the bases of the first three metatarsal bones with the navicular bone and the first two cuneiform bones.

instep girth. The circumference around the foot at the instep, an important last measurement.

inversion. Motion towards the midline of the body, occurring in the coronal plane around an axis that lies 90 degrees to the coronal plane and at the intersection of the transverse and sagittal planes.

joint girth. See ball girth.

last. The plastic, metal or wooden foot shaped form over which the shoe is made to conform to the prescribed shape and size of the shoe. Also used as a verb to describe the process or action of shaping the shoe to the last.

lasting. The operations in the factory involved in forming all parts of the shoe to the last, including such special operations as toe lasting, side lasting, heel seat lasting.
last measurements. 1) The numerous measurements taken on all parts of the last to determine proper size and fit of the shoe, and also proper tread and shoe performance. 2) The standard measurements for sizes and widths for each footwear category such as infants’, children’s, youths, misses, men’s and women’s shoes. 3) The standard measurements designated for the girth of ball, waist, and instep for given shoe sizes relative to the type of footwear.

length. The length measurement of the foot from the back of the heel to the tip of the longest toe; also the length of the shoe from heel to toe tip but not including the shoe’s sole.

length allowance. Additional length added to the last to allow for fashion or an extended toe recede slope; allowance of size for foot stretch or expansion on weight bearing.

osseous. Bone or of bone.

pes cavus. Medical umbrella term for a foot with a high arch or humped instep, irrespective of aetiology.

pes planus. Medical umbrella term for a flat foot with a lowered and flattened medial longitudinal arch, irrespective of aetiology.

pitch. Also known as last pitch or heel pitch.

plantar. Under surface; in scanning a weight bearing foot, it is the surface in contact with the load bearing surface, not visible while the foot is weight bearing.

plantarflexion. Motion away from the body that occurs in the sagittal plane around an axis that lies 90 degrees to the sagittal plane and at the intersection of the coronal and transverse planes.

podometry. The branch of human science that deals with measurement of the foot.

pronation. A triplanar movement along the long axis of the foot consisting of eversion, abduction and dorsiflexion.

radial basis functions. A mathematical concept to interpolate polygonal surfaces into smoothed contiguous surfaces.

rapid prototyping. An additive manufacturing process that creates a model of an object directly from a CAD model by building it in layers, usually of resinous material.

RBF. See radial basis functions.

recede. The part of the closed shoe toe shape that extends beyond the end of the toe of the foot, often slanted forward and downward or tapered.
relaxed calcaneal stance position. Term used in biomechanics to describe the angular relationship between the calcaneus and a perpendicular to the ground on weight bearing, while standing relaxed in the angle and base of gait; angular degrees range from varus to valgus.

retinacula. Tough fascial bands, as in the ankle region; these hold tendons in position.

roll. Term used in 3-D to denote an orientation less than or greater than the horizontal.

seat. See heel seat.

size grading. The increments of size progression in shoe sizes or widths. In the metric system, the size progression is in centimeters. In the American sizing system, length is measured in 1/6 inch per half size and 1/3 inch per full size; or ¼ inch for each width change.

SMME. Abbreviation for small, medium and micro enterprises

sock. Footwear manufacturing term for inner sole of the shoe; also an item of hosiery.

stick length. Length derived from using a stick measure; the overall length of the last measured with a last size stick.

STL. Abbreviation for Standard Tessellation Language, computer code in a polygonal model format that is used for rapid prototyping.

supination. A triplanar movement along the long axis of the foot consisting of inversion, adduction and plantarflexion.

swing. The curvature of the outer rim of the outsole, or on a last.

synovial sheath. Fibrous sac lined with a smooth membrane, producing a viscous lubricant known as synovial fluid, enclosing a tendon in the foot.

3-D Abbreviation for three dimension or three dimensional.

toe part. Term commonly used in South Africa for the front cone of a last.

toe spring. The elevation of the under surface of the sole at the toe so as to give the sole a slight rocker effect for an easier step. The amount of toe spring (built into the last) depends on shoe style, sole thickness and heel height.

topline. The top rim of the shoe’s upper.

topline clip. The amount of tightness of shoe fit on the last around the topline; to fit tightly or snugly on the last.

tread. 1. The widest part across the ball of the foot on the last; 2. the area of the sole of the shoe that comes into contact with the ground for walking.
upper. All the parts or sections (vamp, quarters, linings, etc.) above the sole of the shoe that are stitched or otherwise joined together to become a unit, and then attached to the insole and outsole.

varus. Varus of the foot or part of the foot means a fixation of the part in the position it would assume if inverted. It is a frontal plane fixation in which the plantar surface of the foot is directed towards the midline of the body.

valgus. Valgus of the foot or part of the foot means a fixation of the part in a position it would assume if everted. It is a frontal plane fixation in which the plantar surface of the foot is directed away from the midline of the body.
TABLE OF CONTENTS

Declaration ... i
Abstract ... ii
Acknowledgements ... iv
Glossary .. vi
Contents .. xiii
References .. xviii
List of Figures .. xix
List of Tables ... xxii
List of Appendices .. xxiv

1 FEET AND FOOTWEAR .. 1
 1.1 Shoe fit: an interaction of form and function .. 1
 1.2 Importance of anthropometric studies and footwear surveys 2
 1.3 Importance of footwear fit to health ... 2
 1.4 To make a shoe, the last is first .. 3
 1.4.1 Measurement sets for last making ... 4
 1.4.2 Different lasts for different styles .. 5
 1.4.3 Last curvatures: art or science? ... 8
 1.4.4 Last sizing and grading ... 10
 1.5 The foot: general anatomy for anthropometry .. 14
 1.5.1 Anomalous variations in morphology ... 17
 1.5.1.1 Loss of muscle function ... 17
 1.5.1.2 Oedema ... 17
 1.5.2 Typical variations in morphology ... 17
 1.5.2.1 Age ... 18
 1.5.2.2 Growth environment ... 19
 1.5.2.3 Temperature and fluid balance ... 19
 1.5.2.4 Load .. 20
 1.5.2.5 Activity ... 20
 1.5.2.6 Asymmetry ... 20
 1.5.2.7 Gender ... 21
1.5.2.8 Pregnancy……………………………………………………………….. 21
1.5.2.9 Ethnic, tribal or population sub group……………………… 21
1.5.3 Relevance of anatomical variation to the current study……………… 23
1.6 Non physical factors affecting shoe fit………………………………………. 23
1.7 Interaction between the foot and footwear……………………………………… 25
1.7.1 Why the last cannot be identical to the foot………………………… 25
1.7.2 Importance of toe function……………………………………………… 26
1.7.3 Aspects of shoe design and construction………………………………. 28
1.7.4 Perception of fit………………………………………………………… 29
1.7.5 Proportional Fit……………………………………………………………… 29
1.7.6 Cost of pain and discomfort…………………………………………… 30
1.8 Summary …………………………………………………………………… 30

2 FOCUS ON MEASUREMENT FOR INDUSTRY…………………………… 31
2.1 Background…………………………………………………………………….. 31
2.2 Scaleable measurement comparison……………………………………………… 32
2.3 Formulation of the research question: does the shoe fit the foot? ……… 34
2.4 Aims of the study…………………………………………………………….. 34
2.5 Anticipated outcomes………………………………………………………… 35

3 MATERIALS AND METHODS……………………………………………… 36
3.1 Introduction…………………………………………………………………. 36
3.2 Part one: Development of a 3-D method……………………………………… 36
3.2.1 3-D Measurement technology………………………………………… 37
3.2.2 Selecting and working with technical collaborators…………………….... 38
3.2.3 Selection of a portable 3-D data input device………………………… 40
3.2.3.1 Integration with 3-D modelling and visualisation……………….. 42
3.2.4 Selection of heel elevation for 3-D measurement…………………….... 43
3.2.5 Assessment of plantar impression materials………………………… 43
3.2.5.1 Sea sand…………………………………………………………….. 43
3.2.5.2 Floam……………………………………………………………… 44
3.2.5.3 Modelling clay………………………………………………… 44
3.2.5.4 Phenolic foam………………………………………………….. 44
3.2.5.5 Assessment of plantar impression force 45

3.2.6 Defining the measurement parameters 45

3.2.6.1 Search for common terminology 46

3.2.6.2 Selection of measurement parameters 47

3.2.6.3 Anatomical landmark definitions 48

3.2.6.3.1 Landmark 1: Centre of the heel 49

3.2.6.3.2 Landmark 2: Tuberosity of the navicular bone 50

3.2.6.3.3 Landmark 3: Medial arch 51

3.2.6.3.4 Landmark 4: First metatarsophalangeal joint 52

3.2.6.3.5 Landmark 5: Hallux .. 52

3.2.6.3.6 Landmark 6: Second toe 53

3.2.6.3.7 Landmark 7: Third Toe 53

3.2.6.3.8 Landmark 8: Fifth toe 54

3.2.6.3.9 Landmark 9: Fifth metatarsophalangeal joint 54

3.2.6.3.10 Landmark 10: Styloid process 55

3.2.6.3.11 Landmark 11: Top of the hallux 56

3.2.6.3.12 Landmark 12: Top of the instep 57

3.2.6.3.13 Landmark 13: Ankle 58

3.2.6.3.14 Landmark 14: Lateral Heel 59

3.2.6.3.15 Landmark 15: Centre heel 59

3.2.6.3.16 Landmark 16: Medial heel 60

3.2.6.3.17 Landmark 17: Centre of first metatarsophalangeal
joint impression ... 60

3.2.6.3.18 Landmark 18: Hallux pad centre 61

3.2.6.3.19 Landmark 19: Centre of fifth metatarsophalangeal
joint impression ... 61

3.2.6.3.20 Landmark 20: Calibration dot 62

3.2.6.3.21 Landmark 21: Medial calibration point 62

3.2.6.3.22 Landmark 22: Lateral calibration point 63

3.2.6.3.23 Summary of anatomical landmarks 64

3.2.6.4 Selection of landmarks on lasts 66

3.2.6.5 Comparable last landmark definitions 67

3.2.7 Design of measurement platforms 69
3.2.7.1 Properties required of measurement pyramid pole material … 69
3.2.7.2 Design of step up platforms ... 71
3.2.8 Design of custom scan procedure and custom software 72
 3.2.8.1 Sequence of scanning ... 72
 3.2.8.2 Sequence of processing post scanning 73
3.2.9 Restrictions to scan quality .. 73
 3.2.9.1 Magnetic field artifacts ... 73
 3.2.9.2 Movement artifacts .. 76
 3.2.9.3 Application of Radial Basis Functions 79
3.2.10 Clipping: creating a solid model 81
3.2.11 Summary of new data capture and processing method 85
3.3 Part two: Multi-ethnic 3-D metric study 86
 3.3.1 Materials for the multi-ethnic 3-D metric study 86
 3.3.1.1 Ethnic, tribal and sub group participant selection 86
 3.3.1.2 Age group selection .. 87
 3.3.1.3 Recruitment and sampling of participant groups 88
 3.3.1.4 Demographics of participants 89
 3.3.1.5 Exclusion criteria ... 89
 3.3.1.6 Sample size ... 90
 3.3.2 Method for the multi-ethnic 3-D metric study 91
 3.3.2.1 Opportunity to collect data for future study 91
 3.3.2.2 Body Mass Index .. 91
 3.3.2.3 Sample and researcher bias 91
 3.3.2.4 Validation of intra operator repeatability 92
 3.3.2.5 Validation of instrumentation 94
 3.3.2.6 Ethical approval and recruitment 94
 3.3.2.7 Data collection venues and logistics 95
 3.3.2.8 Data collection process .. 95
 3.3.2.8.1 Measurement process for participants 95
 3.3.2.8.2 Measurement process for the last 97
 3.3.2.8.3 Discarded data .. 97
 3.3.3 Data analysis of the multi-ethnic 3-D metric study 99
 3.3.3.1 Calculated new variable 99
3.3.3.2 Descriptive statistics .. 99
 3.3.3.2.1 Measures of central tendency 100
 3.3.3.2.2 Frequency distributions 100
 3.3.3.2.3 Measures of variability or dispersion 102
 3.3.3.2.4 Normality of distribution 102
3.3.3.3 Inferential statistics .. 103
 3.3.3.3.1 Pearson correlation analysis 104
3.3.4 Summary of multi-ethnic 3-D metric methodology 105
3.4 Part three: Scaleable Measurement comparison 105
 3.4.1 Calculation and comparison of proportional scaled data 106

4 RESULTS .. 108
4.1 Part one: Development of a 3-D method 108
 4.1.1 Patent of 3-D method .. 109
4.2 Part two: Multi-ethnic 3-D metric study 110
 4.2.1 Participant demographics ... 110
 4.2.2 Sample bias and stratification 111
 4.2.3 Analysis on group representing actual size 4 114
 4.2.3.1 Descriptives .. 114
 4.2.3.2 Frequency distributions 117
 4.2.3.2.1 Major Foot Length 117
 4.2.3.2.2 Minor Foot Length 117
 4.2.3.2.3 Toe height .. 118
 4.2.3.2.4 Tread width ... 119
 4.2.3.2.5 Heel seat width 120
 4.2.3.2.6 Heel to Ball 1 ... 121
 4.2.3.2.7 Heel to Ball 5 ... 122
 4.2.3.2.8 Tape Forefoot Girth 123
 4.2.3.3 Overall correlations for size 4 group 124
 4.2.3.3.1 Summary of comparisons to the last 126
4.3 Part three: Scaleable measurement comparison 127
 4.3.1 Descriptives and t-test results 127
 4.3.2 Comparison summary .. 128
5 DISCUSSION AND CONCLUDING REMARKS ... 130

5.1. Were the aims of the study fulfilled? ... 130

5.2. Impact of the results: toppling the “standard” ... 132

5.3. Implications of results for foot health and industry 133

5.3.1 Heel to ball length .. 133

5.3.2 Tread width .. 135

5.3.3 Fifth toe length ... 136

5.3.4 Body Mass Index .. 138

5.4. Outcomes of the study ... 140

5.5. Shortcomings of the methodology .. 143

5.5.1 Research phases: time allocation versus actual duration 143

5.5.2 Physical ergonomics of data capture method ... 143

5.5.3 Design of hand-held input devices ... 144

5.5.4 Design of pyramid platform ... 144

5.5.5 Impact of ergonomics on researcher ... 144

5.5.6 Sample stratification ... 146

5.6. Future studies .. 146

5.7. Future directions for industry .. 147

5.8. Concluding remarks ... 147

6 REFERENCES ... 150
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Female last circa 2003</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Sandal upper and sock affixed to last</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Regions for measurement parameters on a last</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Examples of Open tab, Closed tab and Slip On styles</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>The seven basic shoe styles</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Identical ball girths on different shape lasts</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>A pes planus, “normal” and a pes cavus foot</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Coronal plane forefoot shapes of three different foot types in the study</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>International Scale Comparisons</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Footwear Size Scale Conversion</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Bones of the foot</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>Dorsal view of two palpable bony landmarks of the foot</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>Position of retinacula and synovial sheaths of the foot</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.14</td>
<td>Foot surface anatomy</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.15</td>
<td>Factors affecting fit according to the Battelle study</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1.16</td>
<td>Action of muscles on toes</td>
<td>27</td>
</tr>
<tr>
<td>Figure 1.17</td>
<td>Impact of toe design on foot function</td>
<td>28</td>
</tr>
<tr>
<td>Figure 1.18</td>
<td>Proportional fit for heel to ball ratio</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Female Labour Force Participation Rate</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Sectioned casts for sloper segments</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Point cloud data of a foot as measured in the study</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Single fixed path foot scanning fails to capture all details</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Spatial freedom of movement of FastScan laser and camera</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>A foot scan rendered by RBF modelling</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Phenolic foam</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>American last bottom pattern</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Lateral view of landmark 1</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Landmark 1 in sagittal plane</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Palpation for landmark 2</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Dorsal view of placement of landmark 2</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Dorsal view of landmark 3</td>
<td>51</td>
</tr>
</tbody>
</table>
Figure 3.45 Ankle truncation effect... 80
Figure 3.46 Parameter to process RBF surface.. 81
Figure 3.47 Sweep List dialog box to reverse or “flip” sweeps............................ 82
Figure 3.48 Clip by Point Separation screen.. 83
Figure 3.49 Results of differing clip parameters... 84
Figure 3.50 Means-on-spokes for results of replication testing of Major foot length... 93
Figure 3.51 Total distortion of landmark points.. 98
Figure 3.52 Partial distortion of landmark points.. 98
Figure 3.53 Linear grading of last bottom patterns.. 106
Figure 4.1 Plantar contours of weight bearing foot in 3-D.................................. 108
Figure 4.2 Patent illustration showing components of the new technique........... 109
Figure 4.3 Box plot of age frequency by CSID.. 112
Figure 4.4 Box plot of height frequency by CSID.. 113
Figure 5.1 Fitting implications of heel to ball length variance............................ 133
Figure 5.2 New sole design with band of flex grooves...................................... 135
Figure 5.3 Last pattern (right foot) correction for fifth toe accommodation.......... 137
Figure 5.4 Means-on-spokes of BMI across the four CSID groups...................... 139
Figure 5.5 Digital comparison of foot data set to a model last.......................... 142
LIST OF TABLES

Table 1.1 Overlapping of shoe style classifications .. 7
Table 1.2 Ethnic morphological differences in feet ... 23
Table 3.1 Examples of differences between industry last and podiatric terminology 46
Table 3.2 Measurement parameters in previous studies 48
Table 3.3 Foot and Last comparable parameters .. 66
Table 3.4 Resistive properties of various metals ... 75
Table 3.5 Software parameters for sweep smoothing 77
Table 3.6 Classification groups used by Statistics South Africa, 2004 87
Table 3.7 Age group intervals .. 88
Table 3.8 Planned participant demographics .. 89
Table 3.9 Replication testing on major foot length measurement 92
Table 3.10 Value ranges for frequency distributions 101
Table 4.1 Participant demographics .. 110
Table 4.2 Home languages represented in the study .. 111
Table 4.3 Age group frequencies ... 112
Table 4.4 Cultural and self-identification (CSID) of participants 113
Table 4.5 Summary of descriptive statistics for Size 4 group 114
Table 4.6 Normality overall for the total sample (N=453) 116
Table 4.7 Minor foot length overall frequency ... 117
Table 4.8 Minor foot length frequency by CSID ... 118
Table 4.9 Toe height overall frequency ... 118
Table 4.10 Toe height frequency by CSID .. 119
Table 4.11 Tread width overall frequency .. 119
Table 4.12 Tread width frequency by CSID ... 120
Table 4.13 Heel seat width overall frequency ... 120
Table 4.14 Heel seat width frequency by CSID .. 121
Table 4.15 Heel to ball 1 frequency overall ... 121
Table 4.16 Heel to ball 1 frequency by CSID .. 122
Table 4.17 Heel to ball 5 frequency overall and by CSID 122
Table 4.18 Tape forefoot girth frequency overall .. 123
Table 4.19 Tape forefoot girth frequency by CSID .. 123
<table>
<thead>
<tr>
<th>Table 4.20</th>
<th>Stature, mass and BMI correlations for actual size 4 group (N = 129)</th>
<th>124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.21</td>
<td>Comparison of Size 4 group measurements to “Ingrid” size 4 last</td>
<td>126</td>
</tr>
<tr>
<td>Table 4.22</td>
<td>Statistics for scaleable comparison groups</td>
<td>127</td>
</tr>
<tr>
<td>Table 4.23</td>
<td>Independent Samples Test</td>
<td>128</td>
</tr>
<tr>
<td>Table 4.24</td>
<td>Comparison of mean measurements between both groups and the last</td>
<td>129</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix I</td>
<td>Example notes on investigation of 3-D input devices</td>
<td>164</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Background on technical collaborators</td>
<td>172</td>
</tr>
<tr>
<td>Appendix III</td>
<td>Replication testing of measurements</td>
<td>174</td>
</tr>
<tr>
<td>Appendix IV-a</td>
<td>Faculty Research & Ethics Committee Research Proposal Report</td>
<td>182</td>
</tr>
<tr>
<td>Appendix IV-b</td>
<td>Clearance Certificate Protocol Number EC212004/009</td>
<td>183</td>
</tr>
<tr>
<td>Appendix V</td>
<td>Example of correspondence for University protocol clearances</td>
<td>184</td>
</tr>
<tr>
<td>Appendix VI</td>
<td>Information poster for Doornfontein campus</td>
<td>187</td>
</tr>
<tr>
<td>Appendix VII</td>
<td>Example of correspondence to place poster on a campus intranet</td>
<td>188</td>
</tr>
<tr>
<td>Appendix VIII</td>
<td>Text message for internal electronic news service</td>
<td>189</td>
</tr>
<tr>
<td>Appendix IX</td>
<td>Modified poster for Kingsway campus</td>
<td>190</td>
</tr>
<tr>
<td>Appendix X</td>
<td>Participant Information Sheet</td>
<td>191</td>
</tr>
<tr>
<td>Appendix XI</td>
<td>Informed Consent Form</td>
<td>192</td>
</tr>
<tr>
<td>Appendix XII</td>
<td>Data Recording Form</td>
<td>193</td>
</tr>
<tr>
<td>Appendix XIII</td>
<td>Concept for a radio spot to recruit participants</td>
<td>194</td>
</tr>
<tr>
<td>Appendix XIV</td>
<td>Extracts from Annual Reports and Progress Timelines</td>
<td>195</td>
</tr>
<tr>
<td>Appendix XV</td>
<td>Visual sequence from scans to 3-D object</td>
<td>200</td>
</tr>
<tr>
<td>Appendix XVI</td>
<td>Research potential of 3-D data</td>
<td>201</td>
</tr>
<tr>
<td>Appendix XVII</td>
<td>Example previous and new Last Bottom Patterns</td>
<td>202</td>
</tr>
<tr>
<td>Appendix XVIII</td>
<td>3-D Data rapid prototyped by 3-D resin print</td>
<td>203</td>
</tr>
<tr>
<td>Appendix XIX</td>
<td>Examples of 2-D visuals for industry use</td>
<td>204</td>
</tr>
<tr>
<td>Appendix XX</td>
<td>Development and production of new foot bed design</td>
<td>205</td>
</tr>
<tr>
<td>Appendix XXI</td>
<td>Development of new variable fit shoe</td>
<td>206</td>
</tr>
<tr>
<td>Appendix XXII</td>
<td>Patent 2006/04167</td>
<td>208</td>
</tr>
</tbody>
</table>