On Riesz Operators

**Authors:**Koumba, Ur Armand**Date:**2015-04-22**Subjects:**Operator algebras , Vector spaces , Riesz spaces , Operator theory , Lattice theory**Type:**Thesis**Identifier:**uj:13554 , http://hdl.handle.net/10210/13695**Description:**Ph.D. (Mathematics) , Our objective in this thesis is to investigate two fundamental questions concerning Riesz operators de ned on a Banach space. Recall that Riesz operators are generalizations of compact operators in the sense that Riesz operators have the same spectral properties as compact operators. However, they do not possess the same algebraic properties as compact operators. Our rst question that we investigate is: When is a Riesz operator a nite rank operator? This question is motivated from the fact that if a compact operator de ned on a Banach space has closed range, then it is a nite rank operator. Also, Ghahramani proved that a compact homomorphism de ned on a C -algebra is a nite rank operator, see . Martin Mathieu, in his paper, generalized the result of Ghahramani by proving that a weakly compact homomorphism de ned on a C -algebra is a nite rank operator...**Full Text:**

**Authors:**Koumba, Ur Armand**Date:**2015-04-22**Subjects:**Operator algebras , Vector spaces , Riesz spaces , Operator theory , Lattice theory**Type:**Thesis**Identifier:**uj:13554 , http://hdl.handle.net/10210/13695**Description:**Ph.D. (Mathematics) , Our objective in this thesis is to investigate two fundamental questions concerning Riesz operators de ned on a Banach space. Recall that Riesz operators are generalizations of compact operators in the sense that Riesz operators have the same spectral properties as compact operators. However, they do not possess the same algebraic properties as compact operators. Our rst question that we investigate is: When is a Riesz operator a nite rank operator? This question is motivated from the fact that if a compact operator de ned on a Banach space has closed range, then it is a nite rank operator. Also, Ghahramani proved that a compact homomorphism de ned on a C -algebra is a nite rank operator, see . Martin Mathieu, in his paper, generalized the result of Ghahramani by proving that a weakly compact homomorphism de ned on a C -algebra is a nite rank operator...**Full Text:**

Minimal reducible bounds, forbidden subgraphs and prime ideals in the lattice of additive hereditary graph properties

**Authors:**Berger, Amelie Julie**Date:**2012-01-24**Subjects:**Graph theory , Lattice theory**Type:**Thesis**Identifier:**uj:1915 , http://hdl.handle.net/10210/4277**Description:**Ph.D. , After giving basic definitions concerning additive hereditary properties of graphs, this document is divided into three main sections, concerning minimal reducible bounds, minimal forbidden subgraphs and prime ideals. We prove that every irreducible property has at least one minimal reducible bound, and that if an irreducible property P is contained in a reducible property R, then there is a minimal reducible bound for P contained in R. In addition we show that every reducible property serves as a minimal reducible bound for some irreducible property. Several applications of these results are given in the case of hom-properties, mainly to show the existence of minimal reducible bounds of certain types. We prove that every degenerate property has a minimal reducible bound where one factor is the class of edgeless graphs and provide evidence that this may also be true for an arbitrary irreducible property. We also consider edge partitions and we show that the results for minimal decomposable bounds are similar to those for minimal reducible bounds. The second set of results deals with minimal forbidden subgraphs of graph properties. We show that every reducible property has infinitely many minimal forbidden subgraphs since the set of all the cyclic blocks making up these graphs is infinite. Finally we consider the lattice of all additive hereditary properies and study the prime ideals in this lattice. We give an example of a prime ideal that is not co-principal and give some requirements that non co-principal prime ideals should satisfy. 'vVe prove that the set of properties with bounded chromatic number is not a prime ideal by showing that a property P with bounded chromatic number can be written as the intersection of two properties with unbounded chromatic number if and only if P contains all trees.**Full Text:**

**Authors:**Berger, Amelie Julie**Date:**2012-01-24**Subjects:**Graph theory , Lattice theory**Type:**Thesis**Identifier:**uj:1915 , http://hdl.handle.net/10210/4277**Description:**Ph.D. , After giving basic definitions concerning additive hereditary properties of graphs, this document is divided into three main sections, concerning minimal reducible bounds, minimal forbidden subgraphs and prime ideals. We prove that every irreducible property has at least one minimal reducible bound, and that if an irreducible property P is contained in a reducible property R, then there is a minimal reducible bound for P contained in R. In addition we show that every reducible property serves as a minimal reducible bound for some irreducible property. Several applications of these results are given in the case of hom-properties, mainly to show the existence of minimal reducible bounds of certain types. We prove that every degenerate property has a minimal reducible bound where one factor is the class of edgeless graphs and provide evidence that this may also be true for an arbitrary irreducible property. We also consider edge partitions and we show that the results for minimal decomposable bounds are similar to those for minimal reducible bounds. The second set of results deals with minimal forbidden subgraphs of graph properties. We show that every reducible property has infinitely many minimal forbidden subgraphs since the set of all the cyclic blocks making up these graphs is infinite. Finally we consider the lattice of all additive hereditary properies and study the prime ideals in this lattice. We give an example of a prime ideal that is not co-principal and give some requirements that non co-principal prime ideals should satisfy. 'vVe prove that the set of properties with bounded chromatic number is not a prime ideal by showing that a property P with bounded chromatic number can be written as the intersection of two properties with unbounded chromatic number if and only if P contains all trees.**Full Text:**

- «
- ‹
- 1
- ›
- »