Estimation of parameters and tests for parameter changes in fractional Gaussian noise

- Robbertse, Johannes Lodewickes

**Authors:**Robbertse, Johannes Lodewickes**Date:**2013-07-29**Subjects:**Gaussian processes , Random noise theory , Parameter estimation**Type:**Thesis**Identifier:**uj:7705 , http://hdl.handle.net/10210/8570**Description:**D.Phil. (Mathematical Statistics) , Fractional Brownian motion and its increment process, fractional Gaussian noise, are syn- onymous with the concept of long range dependence. A strictly stationary time series is said to exhibit long range dependence or long memory if its autocorrelations decrease to zero as a power of the lag, but their sum over all lags is not absolutely convergent. This phenomenon has been observed in numerous scientific areas such as hydrology, ethernet traffic data, stock returns and exchange rates, to name just a few. The extent of long memory dependence is characterized by the value of the so called Hurst exponent or Hurst coefficient H. Approximate normality and unbiasedness of the maximum likelihood estimate of H hold reasonably well for sample sizes as small as 20 if the mean and scale parameters are known. We show in a Monte Carlo study that if the latter two parameters are unknown, the bias and variance of the maximum likelihood estimate of H both increase substantially. We also show that the bias can be reduced by using a jackknife or parametric bootstrap proce- dure. However, in very large samples, maximum likelihood estimation becomes problematic because of the large dimension of the covariance matrix that must be inverted. We consider an approach for estimating the Hurst exponent by taking first order differ- ences of fractional Gaussian noise. We find that this differenced process has short memory and that, consequently, we may assume approximate independence between the estimates of the Hurst exponents in disjoint blocks of data. We split the data into a number of con- tiguous blocks, each containing a relatively small number of observations. Computation of the likelihood function in a block then presents no computational problem. We form a pseudo likelihood function consisting of the product of the likelihood functions in each of the blocks and provide a formula for the standard error of the resulting estimator of H. This formula is shown in a Monte Carlo study to provide a good approximation to the true standard error. Application of the methodology is illustrated in two data sets. The long memory property of a time series is primarily characterized by H. In general, such series are exceptionally long, therefore it is natural to enquire whether or not H remains constant over the full extent of the time series. We propose a number of tests for the hypothesis that H remains constant, against an alternative of a change in one or more values of H. Formulas are given to enable calculation of asymptotic p-values. We also propose a permutational procedure for evaluating exact p-values. The proposed tests are applied to three sets of data.**Full Text:**

**Authors:**Robbertse, Johannes Lodewickes**Date:**2013-07-29**Subjects:**Gaussian processes , Random noise theory , Parameter estimation**Type:**Thesis**Identifier:**uj:7705 , http://hdl.handle.net/10210/8570**Description:**D.Phil. (Mathematical Statistics) , Fractional Brownian motion and its increment process, fractional Gaussian noise, are syn- onymous with the concept of long range dependence. A strictly stationary time series is said to exhibit long range dependence or long memory if its autocorrelations decrease to zero as a power of the lag, but their sum over all lags is not absolutely convergent. This phenomenon has been observed in numerous scientific areas such as hydrology, ethernet traffic data, stock returns and exchange rates, to name just a few. The extent of long memory dependence is characterized by the value of the so called Hurst exponent or Hurst coefficient H. Approximate normality and unbiasedness of the maximum likelihood estimate of H hold reasonably well for sample sizes as small as 20 if the mean and scale parameters are known. We show in a Monte Carlo study that if the latter two parameters are unknown, the bias and variance of the maximum likelihood estimate of H both increase substantially. We also show that the bias can be reduced by using a jackknife or parametric bootstrap proce- dure. However, in very large samples, maximum likelihood estimation becomes problematic because of the large dimension of the covariance matrix that must be inverted. We consider an approach for estimating the Hurst exponent by taking first order differ- ences of fractional Gaussian noise. We find that this differenced process has short memory and that, consequently, we may assume approximate independence between the estimates of the Hurst exponents in disjoint blocks of data. We split the data into a number of con- tiguous blocks, each containing a relatively small number of observations. Computation of the likelihood function in a block then presents no computational problem. We form a pseudo likelihood function consisting of the product of the likelihood functions in each of the blocks and provide a formula for the standard error of the resulting estimator of H. This formula is shown in a Monte Carlo study to provide a good approximation to the true standard error. Application of the methodology is illustrated in two data sets. The long memory property of a time series is primarily characterized by H. In general, such series are exceptionally long, therefore it is natural to enquire whether or not H remains constant over the full extent of the time series. We propose a number of tests for the hypothesis that H remains constant, against an alternative of a change in one or more values of H. Formulas are given to enable calculation of asymptotic p-values. We also propose a permutational procedure for evaluating exact p-values. The proposed tests are applied to three sets of data.**Full Text:**

Stochastic volatility modeling of the Ornstein Uhlenbeck type : pricing and calibration

**Authors:**Marshall, Jean-Pierre**Date:**2010-02-23T10:22:16Z**Subjects:**Stochastic processes , Lévy processes , Gaussian processes , Ornstein-Uhlenbeck process , Options (Finance) , Prices**Type:**Thesis**Identifier:**uj:6632 , http://hdl.handle.net/10210/3033**Description:**M.Sc.**Full Text:**

**Authors:**Marshall, Jean-Pierre**Date:**2010-02-23T10:22:16Z**Subjects:**Stochastic processes , Lévy processes , Gaussian processes , Ornstein-Uhlenbeck process , Options (Finance) , Prices**Type:**Thesis**Identifier:**uj:6632 , http://hdl.handle.net/10210/3033**Description:**M.Sc.**Full Text:**

- «
- ‹
- 1
- ›
- »