Mechanistic study on tertiary phosphine complexes of ruthenium as olefin metathesis catalysts.
- Authors: Oosthuizen, Sharon
- Date: 2008-05-15T13:28:00Z
- Subjects: Phosphine , Alkenes , Chemical kinetics , Reactivity (Chemistry) , Metathesis (Chemistry) , Ruthenium , Transition metal catalysts , Complex compounds synthesis
- Type: Thesis
- Identifier: http://ujcontent.uj.ac.za8080/10210/374346 , uj:1717 , http://hdl.handle.net/10210/405
- Description: Ruthenium carbene complexes, with the general structure, [LL’Ru=CHR], are commonly known as Grubbs type catalysts, named after the discoverer of these metathesis catalysts. The discovery was quite revolutionary, since the catalysts proved to be easy to handle, tolerant towards various functional groups and more stable with regard to air and water than previous transition metal catalysts. Another important advantage was that all types of olefin metathesis reactions could be initiated without the help of co-catalysts or promoters. Today Grubbs type catalysts find wide application in especially organic and synthetic chemistry. A well-known example is the SHOP-process which produces long chain -olefins, while other important applications include the synthesis of macro-cyclic and cyclic olefins. The current study involved experimental and theoretical work to investigate various aspects comprising synthetic procedures, reactivity, kinetics, geometry and electronic properties of the complexes. Results are discussed briefly in the following paragraphs. The first aim of the project was to synthesise a Grubbs type catalyst. Initial efforts were focused on the preparation of a first generation catalyst through various methods. This included modifying the reported method for the synthesis of [(PPh3)2Cl2Ru=CH-CH=CMe2] to yield [(PPh2Cy)2Cl2Ru=CHCH= CMe2] instead; a phosphine exchange reaction with the complex [(PPh3)2Cl2Ru=CH-CH=CMe2] and free phosphine PPh2Cy; and utilising the analogue arsine ligand, AsPh3, to synthesise [(AsPh3)2Cl2Ru=CHCH=CMe2]; but unfortunately no success was achieved. However, it was possible to synthesise a novel second generation Grubbs type catalyst, [(IMesH2)(PPh2Cy)Cl2Ru=CHPh], through the phosphine exchange reaction of [(IMesH2)(NC5H5)2Cl2Ru=CHPh] and PPh2Cy. The new complex was tested in kinetic reaction studies and phosphine exchange reactions. Results showed that [(IMesH2)(PPh2Cy)Cl2Ru=CHPh] was catalytically active for the ring closing metathesis of commercial diethyl diallylmalonate. The reaction was first order with regard to the olefin, contrary to the second order kinetic results reported for similar reactions catalysed by first generation Grubbs catalysts. The phosphine exchange reactions were very successful and a rate constant could be determined. The rate constant was independent of the free phosphine concentration and activation parameters had relatively large, positive values; results indicative of a dissociative mechanism. These findings are in correlation with literature reports. A kinetic investigation was done on the catalyst-olefin coordination involving the functionalized olefins vinyl acetate, allyl acetate and allyl cyanide; and the first generation Grubbs catalyst, [(PCy3)2Cl2Ru=CHPh]. A two-step rate law, similar to an interchange mechanism, was determined. Phobcat, [(PhobCy)2Cl2Ru=CHPh], is modified first generation Grubbs type catalyst with rigid bicyclic phosphine rings which was recently developed by the Sasol Homogeneous Metathesis Group. In the current study Phobcat was compared to Grubbs1-PCy3 in the cross metathesis reaction of 1-octene. Results showed that Phobcat was up to 60% more active and had a 5 hour longer lifetime than Grubbs 1-PCy3. Theoretical studies were done on the three functionalized olefins of the earlier experimental study to gain fundamental understanding of steric and electronic influences on these catalyst-olefin systems. Without exception, coordination via the heteroatom of the olefin was significantly more favourable than coordination via the double bond functionality. This result indicates that metathesis of these olefins is highly unlikely, since the stable heteroatom coordination will suppress the parallel Ru=C/C=C interaction which is compulsory for the metathesis reaction. Orbital studies highlighted the difference between coordination of acetate and cyanide, but no trend of an electronic nature could be recognised. , Prof. A. Roodt
- Full Text:
- Authors: Oosthuizen, Sharon
- Date: 2008-05-15T13:28:00Z
- Subjects: Phosphine , Alkenes , Chemical kinetics , Reactivity (Chemistry) , Metathesis (Chemistry) , Ruthenium , Transition metal catalysts , Complex compounds synthesis
- Type: Thesis
- Identifier: http://ujcontent.uj.ac.za8080/10210/374346 , uj:1717 , http://hdl.handle.net/10210/405
- Description: Ruthenium carbene complexes, with the general structure, [LL’Ru=CHR], are commonly known as Grubbs type catalysts, named after the discoverer of these metathesis catalysts. The discovery was quite revolutionary, since the catalysts proved to be easy to handle, tolerant towards various functional groups and more stable with regard to air and water than previous transition metal catalysts. Another important advantage was that all types of olefin metathesis reactions could be initiated without the help of co-catalysts or promoters. Today Grubbs type catalysts find wide application in especially organic and synthetic chemistry. A well-known example is the SHOP-process which produces long chain -olefins, while other important applications include the synthesis of macro-cyclic and cyclic olefins. The current study involved experimental and theoretical work to investigate various aspects comprising synthetic procedures, reactivity, kinetics, geometry and electronic properties of the complexes. Results are discussed briefly in the following paragraphs. The first aim of the project was to synthesise a Grubbs type catalyst. Initial efforts were focused on the preparation of a first generation catalyst through various methods. This included modifying the reported method for the synthesis of [(PPh3)2Cl2Ru=CH-CH=CMe2] to yield [(PPh2Cy)2Cl2Ru=CHCH= CMe2] instead; a phosphine exchange reaction with the complex [(PPh3)2Cl2Ru=CH-CH=CMe2] and free phosphine PPh2Cy; and utilising the analogue arsine ligand, AsPh3, to synthesise [(AsPh3)2Cl2Ru=CHCH=CMe2]; but unfortunately no success was achieved. However, it was possible to synthesise a novel second generation Grubbs type catalyst, [(IMesH2)(PPh2Cy)Cl2Ru=CHPh], through the phosphine exchange reaction of [(IMesH2)(NC5H5)2Cl2Ru=CHPh] and PPh2Cy. The new complex was tested in kinetic reaction studies and phosphine exchange reactions. Results showed that [(IMesH2)(PPh2Cy)Cl2Ru=CHPh] was catalytically active for the ring closing metathesis of commercial diethyl diallylmalonate. The reaction was first order with regard to the olefin, contrary to the second order kinetic results reported for similar reactions catalysed by first generation Grubbs catalysts. The phosphine exchange reactions were very successful and a rate constant could be determined. The rate constant was independent of the free phosphine concentration and activation parameters had relatively large, positive values; results indicative of a dissociative mechanism. These findings are in correlation with literature reports. A kinetic investigation was done on the catalyst-olefin coordination involving the functionalized olefins vinyl acetate, allyl acetate and allyl cyanide; and the first generation Grubbs catalyst, [(PCy3)2Cl2Ru=CHPh]. A two-step rate law, similar to an interchange mechanism, was determined. Phobcat, [(PhobCy)2Cl2Ru=CHPh], is modified first generation Grubbs type catalyst with rigid bicyclic phosphine rings which was recently developed by the Sasol Homogeneous Metathesis Group. In the current study Phobcat was compared to Grubbs1-PCy3 in the cross metathesis reaction of 1-octene. Results showed that Phobcat was up to 60% more active and had a 5 hour longer lifetime than Grubbs 1-PCy3. Theoretical studies were done on the three functionalized olefins of the earlier experimental study to gain fundamental understanding of steric and electronic influences on these catalyst-olefin systems. Without exception, coordination via the heteroatom of the olefin was significantly more favourable than coordination via the double bond functionality. This result indicates that metathesis of these olefins is highly unlikely, since the stable heteroatom coordination will suppress the parallel Ru=C/C=C interaction which is compulsory for the metathesis reaction. Orbital studies highlighted the difference between coordination of acetate and cyanide, but no trend of an electronic nature could be recognised. , Prof. A. Roodt
- Full Text:
Nitrogen-donor nickel and palladium complexes as olefin transformation catalysts
- Authors: Ojwach, Stephen Otieno
- Date: 2009-04-30T10:05:35Z
- Subjects: Alkenes , Transition metal catalysts , Transition metal compounds , Nickel compounds , Palladium compounds , Complex compounds synthesis
- Type: Thesis
- Identifier: uj:8340 , http://hdl.handle.net/10210/2466
- Description: Ph.D. , Compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L2) were prepared by phase transfer alkylation of 2,6-bis(bromomethyl)pyridine with two mole equivalents of the appropriate pyrazole. Ligands L1 and L2 reacted with either [PdCl2(NCMe)2] or [PdClMe(COD)] to form mononuclear palladium complexes [(PdCl2(L1)] (1), [(PdClMe(L1)] (2), [(PdCl2(L2)] (3), [(PdClMe(L2)] (4). All new compounds prepared were characterised by a combination of 1H NMR, 13C NMR spectroscopy and microanalyses. The coordination of L2 in a bidentate fashion through the pyridine nitrogen atom and one pyrazolyl nitrogen atom has been confirmed by single crystal X-ray crystallography of complex 3. Reactions of 1, 2 and 3 with the halide abstractor NaBAr4 (Ar = 3,5-(CF3)2C6H3) led to the formation of the stable tridentate cationic species [(PdCl(L1)]BAr4 (5), [(PdMe(L1)]BAr4 (6) and [(PdCl(L2)]BAr4 (7) respectively. Tridentate coordination of L1 and L2 in the cationic complexes has also been confirmed by single X-ray crystallography of complexes 5 and 6. The analogous carbonyl linker cationic species, [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction from [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] with NaBAr4, were however less stable. While cationic complexes 5-7 showed indefinite stability in solution, 9 and 10 had t1/2 of 14 and 2 days respectively. Attempts to crystallise 1 and 3 from the mother liquor resulted in the isolation of the salts [PdCl(L1)]2[Pd2Cl6] (11) and [PdCl(L2)]2[Pd2Cl6] (12). Although when complexes 1-4 xviii were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerisation or polymerisation were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerised and polymerised phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene. Compounds 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L4) were prepared by phase transfer alkylation of 2-picolylchloride hydrochloride with one mole equivalent of the appropriate pyrazole. Compounds 2-(3,5-bis-trifluoromethyl-pyrazol-1-ylmethyl)-6-(3,5-dimethyl-pyrazol-1-ylmethyl)-pyridine (L5) and 2-(3,5-dimethyl-pyrazol-1-ylmethyl)-6-phenoxymethyl-pyridine (L6) were isolated in good yields by reacting (2-chloromethyl-6-3,5-dimethylpyrazol-1-ylmethyl)pyridine with an equivalent amount of potassium salt of 3,5-bis(trifluoromethyl)pyrazolate and potassium phenolate respectively. L3-L6 react with either [Pd(NCMe)2Cl2] or [PdClMe(COD)] to give mononuclear palladium complexes 13-18 of the general formulae [PdCl2(L)] or [PdClMe(L)] where L = is the bidentate ligands L3, L4, L5 and L6 respectively. Single crystal X-ray crystallography of complexes 13, 15 and 16 has been used to confirm the solid state geometry of the complexes. In attempts to generate active olefin oligomerisation catalysts, the chloromethyl Pd(II) complexes 14 and 16 were reacted with the halide abstractor NaBAr4 in the presence of stabilising solvents (i.e Et2O or NCMe) but no catalytic activities were observed. Decomposition was evident as observed from the deposition of palladium black in experiments using Et2O. In experiments where NCMe was used as the stabilising solvent, the formation of cationic species stabilised by NCMe was evident from 1H NMR analyses. Reaction of complex 14 with NaBAr4 on a preparative scale in a mixture of CH2Cl2 and NCMe solvent gave the cationic complex [[PdMeNCMe(L3)]BAr4 (19) in good yields. Complex 17 reacted with NABAr4 to give tridentate cationic species [[PdMe(L5)]BAr4 (20) which is inactive towards ethylene oligomerisation or polymerisation reactions. The tridentate coordination of L5 in 20 has also been established by single crystal X-ray structure of 20. Catalysts generated from 18 and 19 catalysed ethylene polymerisation at high pressures to branched polyethylene; albeit with very low activity. The Choromethyl palladium complex 14 reacted with sulfur dioxide to form complex 21. The nature of the product has been established by 1H NMR, 13C NMR and mass spectrometry to be an insertion product of SO2 into the Pd-Me bond of 14. Compounds L1-L4 reacted with the nickel salts NiCl2 or NiBr2 in a 1:1 mole ratio to give the nickel complexes [NiCl2(L1)] (22), [NiBr2(L1)] (23), [NiCl2(L2)] (24), and [NiBr2(L2)] (25), [Ni2(μ2-Cl)2Cl2(L3)2] (26), [Ni2(μ2-Br)2Br2(L3)2] (27), [NiCl2(L4)] (29) and [NiBr2(L4)] (30) in good yields. Reaction of L3 with NiBr2 in a 2:1 mole gave the octahedral complex [NiBr2(L4)2] (28) in good yields. Complexes 22-30 were characterised by a combination micro-analyses, mass spectrometry and single crystal X-ray analyses for 27 and 30. No NMR data were acquired because of the paramagnetic nature of the complexes. When complexes 22-30 were activated with EtAlCl2, highly active olefin oligomerisation catalysts were formed. In the ethylene oligomeristion reactions, three oligomers: C11, C14 xx and C16 were identified as the major products. Selectivityof 40% towards α-olefins were generally obtained. In general catalysts that contain the bidentate ligands L3 and L4 were more active than those that contain the tridentate ligands L1 and L2. Dichloride complexes exhibited relatively higher catalytic activities than their dibromide analogues. Turn over numbers (TON) for oligomer formation showed high dependence on ethylene concentration. A Lineweaver-Burk analysis of reactions catalysed by 22 and 26 showed TON saturation of 28 393 kg oligomer/mol Ni.h and 19 000 kg oligomer/mol Ni.h respectively. Catalysts generated from complexes 22-30 also catalysed oligomerisation of the higher olefins, 1-pentene, 1-hexene and 1-heptene and displayed good catalytic activities. Only two products C12 and C15 were obtained in the 1-pentene oligomerisation reactions. The 1-hexene reactions also gave two products, C12 and C18, while 1-heptene oligomerisation reactions gave predominantly C14 oligomers. Five benzoazoles were used to prepare a series of palladium complexes that were invesitigated as Heck coupling catalysts. The compounds 2-pyridin-2-yl-1H-benzoimidazole (L7) and 2-pyridin-2-yl-benzothiazole (L8) were prepared following literature procedures. The new ligands 2-(4-tert-butylpyridin-2-yl)-benzooxazole (L9) and 2-(4-tert-butyl-pyridin-2-yl)-benzothiazole (L10) were prepared by ring closure of aminophenol and aminothiophenol with tert-butyl picolinic acid respectively. The ligand 6-tert-Butyl-2-(4-tert-butyl-pyridin-2-yl)-benzothiazole (L11) was prepared by intramolecular cyclisation under basic conditions is described. Reactions of L7-L11 with either [Pd(NCMe)2Cl2] or [Pd(COD)MeCl] afforded the corresponding mononuclear palladium complexes [PdClMe(L7)] (31), [PdClMe(L8)] (32), [PdCl2(L9)] (33), [PdMeCl(L9)] (34), [PdCl2(L10)] (5), [PdMeCl(L10)] (36) and [PdMeCl(L11)] (37) as xxi confirmed by mass spectrometry and micro-analyses. The palladium complexes 31-37 were efficient Heck coupling catalysts for the reaction of iodobenzene with butylacrylate under mild conditions and showed good stability.
- Full Text:
- Authors: Ojwach, Stephen Otieno
- Date: 2009-04-30T10:05:35Z
- Subjects: Alkenes , Transition metal catalysts , Transition metal compounds , Nickel compounds , Palladium compounds , Complex compounds synthesis
- Type: Thesis
- Identifier: uj:8340 , http://hdl.handle.net/10210/2466
- Description: Ph.D. , Compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L2) were prepared by phase transfer alkylation of 2,6-bis(bromomethyl)pyridine with two mole equivalents of the appropriate pyrazole. Ligands L1 and L2 reacted with either [PdCl2(NCMe)2] or [PdClMe(COD)] to form mononuclear palladium complexes [(PdCl2(L1)] (1), [(PdClMe(L1)] (2), [(PdCl2(L2)] (3), [(PdClMe(L2)] (4). All new compounds prepared were characterised by a combination of 1H NMR, 13C NMR spectroscopy and microanalyses. The coordination of L2 in a bidentate fashion through the pyridine nitrogen atom and one pyrazolyl nitrogen atom has been confirmed by single crystal X-ray crystallography of complex 3. Reactions of 1, 2 and 3 with the halide abstractor NaBAr4 (Ar = 3,5-(CF3)2C6H3) led to the formation of the stable tridentate cationic species [(PdCl(L1)]BAr4 (5), [(PdMe(L1)]BAr4 (6) and [(PdCl(L2)]BAr4 (7) respectively. Tridentate coordination of L1 and L2 in the cationic complexes has also been confirmed by single X-ray crystallography of complexes 5 and 6. The analogous carbonyl linker cationic species, [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction from [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] with NaBAr4, were however less stable. While cationic complexes 5-7 showed indefinite stability in solution, 9 and 10 had t1/2 of 14 and 2 days respectively. Attempts to crystallise 1 and 3 from the mother liquor resulted in the isolation of the salts [PdCl(L1)]2[Pd2Cl6] (11) and [PdCl(L2)]2[Pd2Cl6] (12). Although when complexes 1-4 xviii were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerisation or polymerisation were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerised and polymerised phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene. Compounds 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L4) were prepared by phase transfer alkylation of 2-picolylchloride hydrochloride with one mole equivalent of the appropriate pyrazole. Compounds 2-(3,5-bis-trifluoromethyl-pyrazol-1-ylmethyl)-6-(3,5-dimethyl-pyrazol-1-ylmethyl)-pyridine (L5) and 2-(3,5-dimethyl-pyrazol-1-ylmethyl)-6-phenoxymethyl-pyridine (L6) were isolated in good yields by reacting (2-chloromethyl-6-3,5-dimethylpyrazol-1-ylmethyl)pyridine with an equivalent amount of potassium salt of 3,5-bis(trifluoromethyl)pyrazolate and potassium phenolate respectively. L3-L6 react with either [Pd(NCMe)2Cl2] or [PdClMe(COD)] to give mononuclear palladium complexes 13-18 of the general formulae [PdCl2(L)] or [PdClMe(L)] where L = is the bidentate ligands L3, L4, L5 and L6 respectively. Single crystal X-ray crystallography of complexes 13, 15 and 16 has been used to confirm the solid state geometry of the complexes. In attempts to generate active olefin oligomerisation catalysts, the chloromethyl Pd(II) complexes 14 and 16 were reacted with the halide abstractor NaBAr4 in the presence of stabilising solvents (i.e Et2O or NCMe) but no catalytic activities were observed. Decomposition was evident as observed from the deposition of palladium black in experiments using Et2O. In experiments where NCMe was used as the stabilising solvent, the formation of cationic species stabilised by NCMe was evident from 1H NMR analyses. Reaction of complex 14 with NaBAr4 on a preparative scale in a mixture of CH2Cl2 and NCMe solvent gave the cationic complex [[PdMeNCMe(L3)]BAr4 (19) in good yields. Complex 17 reacted with NABAr4 to give tridentate cationic species [[PdMe(L5)]BAr4 (20) which is inactive towards ethylene oligomerisation or polymerisation reactions. The tridentate coordination of L5 in 20 has also been established by single crystal X-ray structure of 20. Catalysts generated from 18 and 19 catalysed ethylene polymerisation at high pressures to branched polyethylene; albeit with very low activity. The Choromethyl palladium complex 14 reacted with sulfur dioxide to form complex 21. The nature of the product has been established by 1H NMR, 13C NMR and mass spectrometry to be an insertion product of SO2 into the Pd-Me bond of 14. Compounds L1-L4 reacted with the nickel salts NiCl2 or NiBr2 in a 1:1 mole ratio to give the nickel complexes [NiCl2(L1)] (22), [NiBr2(L1)] (23), [NiCl2(L2)] (24), and [NiBr2(L2)] (25), [Ni2(μ2-Cl)2Cl2(L3)2] (26), [Ni2(μ2-Br)2Br2(L3)2] (27), [NiCl2(L4)] (29) and [NiBr2(L4)] (30) in good yields. Reaction of L3 with NiBr2 in a 2:1 mole gave the octahedral complex [NiBr2(L4)2] (28) in good yields. Complexes 22-30 were characterised by a combination micro-analyses, mass spectrometry and single crystal X-ray analyses for 27 and 30. No NMR data were acquired because of the paramagnetic nature of the complexes. When complexes 22-30 were activated with EtAlCl2, highly active olefin oligomerisation catalysts were formed. In the ethylene oligomeristion reactions, three oligomers: C11, C14 xx and C16 were identified as the major products. Selectivityof 40% towards α-olefins were generally obtained. In general catalysts that contain the bidentate ligands L3 and L4 were more active than those that contain the tridentate ligands L1 and L2. Dichloride complexes exhibited relatively higher catalytic activities than their dibromide analogues. Turn over numbers (TON) for oligomer formation showed high dependence on ethylene concentration. A Lineweaver-Burk analysis of reactions catalysed by 22 and 26 showed TON saturation of 28 393 kg oligomer/mol Ni.h and 19 000 kg oligomer/mol Ni.h respectively. Catalysts generated from complexes 22-30 also catalysed oligomerisation of the higher olefins, 1-pentene, 1-hexene and 1-heptene and displayed good catalytic activities. Only two products C12 and C15 were obtained in the 1-pentene oligomerisation reactions. The 1-hexene reactions also gave two products, C12 and C18, while 1-heptene oligomerisation reactions gave predominantly C14 oligomers. Five benzoazoles were used to prepare a series of palladium complexes that were invesitigated as Heck coupling catalysts. The compounds 2-pyridin-2-yl-1H-benzoimidazole (L7) and 2-pyridin-2-yl-benzothiazole (L8) were prepared following literature procedures. The new ligands 2-(4-tert-butylpyridin-2-yl)-benzooxazole (L9) and 2-(4-tert-butyl-pyridin-2-yl)-benzothiazole (L10) were prepared by ring closure of aminophenol and aminothiophenol with tert-butyl picolinic acid respectively. The ligand 6-tert-Butyl-2-(4-tert-butyl-pyridin-2-yl)-benzothiazole (L11) was prepared by intramolecular cyclisation under basic conditions is described. Reactions of L7-L11 with either [Pd(NCMe)2Cl2] or [Pd(COD)MeCl] afforded the corresponding mononuclear palladium complexes [PdClMe(L7)] (31), [PdClMe(L8)] (32), [PdCl2(L9)] (33), [PdMeCl(L9)] (34), [PdCl2(L10)] (5), [PdMeCl(L10)] (36) and [PdMeCl(L11)] (37) as xxi confirmed by mass spectrometry and micro-analyses. The palladium complexes 31-37 were efficient Heck coupling catalysts for the reaction of iodobenzene with butylacrylate under mild conditions and showed good stability.
- Full Text:
Palladium, platinum and gold complexes: a synthetic approach towards the discovery of anticancer agents
- Authors: Keter, Frankline Kiplangat
- Date: 2010-03-10T06:28:55Z
- Subjects: Palladium compounds , Platinum compounds , Gold compounds , Complex compounds synthesis , Cancer treatment , Palladium - Therapeutic use , Gold - Therapeutic use , Platinum - Therapeutic use
- Type: Thesis
- Identifier: uj:6669 , http://hdl.handle.net/10210/3074
- Description: Ph.D. , Ligands bis(pyrazolyl)acetic acid (L1) and bis(3,5-dimethylpyrazolyl)acetic acid (L2) were synthesised by reacting pyrazoles and dibromoacetic acid under phase transfer conditions, by using benzyltriethylammonium chloride as the catalyst. Ligands L1 and L2 were characterised by a combination of 1H, 13C{1H} NMR, IR spectroscopy and microanalysis. Esterification of L1 and L2 led to formation of bis(pyrazolyl)ethyl acetate (L3) and bis(3,5-dimethylpyrazolyl)ethyl acetate (L4). Ligands L3 and L4 were also characterised by a combination of 1H, 13C{1H} NMR, IR spectroscopy and microanalysis. Subsequently, new pyrazolyl palladium(II) and platinum(II) compounds, [PdCl2(L1)] (1), [PdCl2(L2)] (2), [PtCl2(L1)] (3a) and [PtCl2(L2)] (4) were prepared by reacting bis(pyrazolyl)acetic acid ligands (L1-L2) with K2[PdCl4] or K2[PtCl4] respectively. The structures of complex 1 and 2 reveal distorted square planar geometries. The bond angles of N-Pd-N, N-Pd-Cl, N-Pd-Cl, for 1 and 2 are between 85.8(3)o and 90.81(4)o). The platinum compound, K2[Pt4Cl8(L1)2(deprotonated-L1)2].2H2O (3b), crystallised from aqueous solutions containing 3a when such solutions were left to stand overnight. Each platinum coordination environment consists of two cis-Cl ligands and one K2-N^N(L1) unit (L1 = bis(pyrazolyl)acetic acid), with two ligand moieties in 3b that are deprotonated with two K+ counter ions. Reaction of bis(pyrazolyl)acetic acid ligands (L1-L2) with [HAuCl4].4H2O gave gold(III) complexes [AuCl2(L1)]Cl (5a) and [AuCl2(L2)]Cl (6a). The spectroscopic, mass spectroscopy and microanalysis data were used to confirm the formation of the desired complexes. However, attempts to crystallise 5a and 6a led to formation of [AuCl2(pz)(pzH)] (5b) and [AuCl2(3,5-Me2pz)(3,5-Me2pzH)] (6b). This was confirmed by the structural characterisation of 5b, which has a distorted square-planar geometry. When complexes 1-6a were screened for their anti-tumour activity against CHO-22 cells, they showed no appreciable biological activities against CHO-22 cells. Substitution reactions of complexes 1-6a with L-cysteine performed to probe any relationship between the observed antitumour activities and the rates of ligand substitution of these complexes were inconclusive. Dithiocarbamate ligands L5-L8 were synthesised as potassium salts by introducing a CS2 group in positions 1 of pyrazole, 3,5-dimethylpyrazole, indazole and imidazole. The reaction of L5-L8 with [AuCl(PPh3)], [Au2Cl2(dppe)], [Au2Cl2(dppp)] and [Au2Cl2(dpph)], led to isolation of complexes [Au(L)(PPh3)] (13-16), [Au2(L)2(dppe)] (17a-19), [Au2(L)2(dppp)] (20-22) and [Au2(L)2(dpph)] (23-25) (dppe = bis(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane, dpph = bis(diphenylphosphino)hexane; L = anions of L5-L8). The mononuclear molecular structure of 15 features a near linear geometry with a P(1)-Au(1)-S(1) angle of 175.36(2) o. The binuclear gold(I) complexes 20-22 and 23-25 have two P-Au-S moieties as evident in the solid state structure of 25. Attempts to crystallise complex 17a led to the formation of a gold(I) cluster complex [Au18S8(dppe)6]2+ (17b) as confirmed by X-ray crystallography. Cluster 17b features weak Au···Au interactions (2.9263(7)-3.1395(7) Å). Complexes 13-16 and 20-25 were tested in vitro for anticancer activity on HeLa cells. The activities of gold(I) complexes 13-16 were comparable to that of cisplatin. Dinuclear gold(I) complexes 20-25 also showed appreciable antitumour activity against HeLa cells. However, the dpph gold(I) compounds (23-25) were highly active, with 24 showing the highest activity against HeLa cells (IC50 = 0.1 μM). The tumour specificity (TS) factors for 23 and 24 were 31.0 and 70.5, respectively.
- Full Text:
- Authors: Keter, Frankline Kiplangat
- Date: 2010-03-10T06:28:55Z
- Subjects: Palladium compounds , Platinum compounds , Gold compounds , Complex compounds synthesis , Cancer treatment , Palladium - Therapeutic use , Gold - Therapeutic use , Platinum - Therapeutic use
- Type: Thesis
- Identifier: uj:6669 , http://hdl.handle.net/10210/3074
- Description: Ph.D. , Ligands bis(pyrazolyl)acetic acid (L1) and bis(3,5-dimethylpyrazolyl)acetic acid (L2) were synthesised by reacting pyrazoles and dibromoacetic acid under phase transfer conditions, by using benzyltriethylammonium chloride as the catalyst. Ligands L1 and L2 were characterised by a combination of 1H, 13C{1H} NMR, IR spectroscopy and microanalysis. Esterification of L1 and L2 led to formation of bis(pyrazolyl)ethyl acetate (L3) and bis(3,5-dimethylpyrazolyl)ethyl acetate (L4). Ligands L3 and L4 were also characterised by a combination of 1H, 13C{1H} NMR, IR spectroscopy and microanalysis. Subsequently, new pyrazolyl palladium(II) and platinum(II) compounds, [PdCl2(L1)] (1), [PdCl2(L2)] (2), [PtCl2(L1)] (3a) and [PtCl2(L2)] (4) were prepared by reacting bis(pyrazolyl)acetic acid ligands (L1-L2) with K2[PdCl4] or K2[PtCl4] respectively. The structures of complex 1 and 2 reveal distorted square planar geometries. The bond angles of N-Pd-N, N-Pd-Cl, N-Pd-Cl, for 1 and 2 are between 85.8(3)o and 90.81(4)o). The platinum compound, K2[Pt4Cl8(L1)2(deprotonated-L1)2].2H2O (3b), crystallised from aqueous solutions containing 3a when such solutions were left to stand overnight. Each platinum coordination environment consists of two cis-Cl ligands and one K2-N^N(L1) unit (L1 = bis(pyrazolyl)acetic acid), with two ligand moieties in 3b that are deprotonated with two K+ counter ions. Reaction of bis(pyrazolyl)acetic acid ligands (L1-L2) with [HAuCl4].4H2O gave gold(III) complexes [AuCl2(L1)]Cl (5a) and [AuCl2(L2)]Cl (6a). The spectroscopic, mass spectroscopy and microanalysis data were used to confirm the formation of the desired complexes. However, attempts to crystallise 5a and 6a led to formation of [AuCl2(pz)(pzH)] (5b) and [AuCl2(3,5-Me2pz)(3,5-Me2pzH)] (6b). This was confirmed by the structural characterisation of 5b, which has a distorted square-planar geometry. When complexes 1-6a were screened for their anti-tumour activity against CHO-22 cells, they showed no appreciable biological activities against CHO-22 cells. Substitution reactions of complexes 1-6a with L-cysteine performed to probe any relationship between the observed antitumour activities and the rates of ligand substitution of these complexes were inconclusive. Dithiocarbamate ligands L5-L8 were synthesised as potassium salts by introducing a CS2 group in positions 1 of pyrazole, 3,5-dimethylpyrazole, indazole and imidazole. The reaction of L5-L8 with [AuCl(PPh3)], [Au2Cl2(dppe)], [Au2Cl2(dppp)] and [Au2Cl2(dpph)], led to isolation of complexes [Au(L)(PPh3)] (13-16), [Au2(L)2(dppe)] (17a-19), [Au2(L)2(dppp)] (20-22) and [Au2(L)2(dpph)] (23-25) (dppe = bis(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane, dpph = bis(diphenylphosphino)hexane; L = anions of L5-L8). The mononuclear molecular structure of 15 features a near linear geometry with a P(1)-Au(1)-S(1) angle of 175.36(2) o. The binuclear gold(I) complexes 20-22 and 23-25 have two P-Au-S moieties as evident in the solid state structure of 25. Attempts to crystallise complex 17a led to the formation of a gold(I) cluster complex [Au18S8(dppe)6]2+ (17b) as confirmed by X-ray crystallography. Cluster 17b features weak Au···Au interactions (2.9263(7)-3.1395(7) Å). Complexes 13-16 and 20-25 were tested in vitro for anticancer activity on HeLa cells. The activities of gold(I) complexes 13-16 were comparable to that of cisplatin. Dinuclear gold(I) complexes 20-25 also showed appreciable antitumour activity against HeLa cells. However, the dpph gold(I) compounds (23-25) were highly active, with 24 showing the highest activity against HeLa cells (IC50 = 0.1 μM). The tumour specificity (TS) factors for 23 and 24 were 31.0 and 70.5, respectively.
- Full Text:
Synthesis and evaluation of nitrogen-and phosphorus-donor platinum and gold complexes as anti-cancer agents
- Authors: Segapelo, Tebogo Vincent
- Date: 2010-03-16T07:30:49Z
- Subjects: Gold compounds , Platinum compounds , Gold - Therapeutic use , Platinum - Therapeutic use , Complex compounds synthesis , Cancer treatment
- Type: Thesis
- Identifier: uj:6682 , http://hdl.handle.net/10210/3086
- Description: Ph.D. , Chapter 1 presents a brief overview on the development of platinum, ruthenium and gold anti-cancer complexes. The clinical success of cisplatin has been a tremendous impetus for the design of metal-based antitumor drugs. Its mechanism of action is therefore briefly discussed, as well as the toxic side effects of its clinical use and the cellular resistance to the drug. It is its side effects and drug resistance that have stimulated the development of cisplatin analogues and other metal based anti-cancer agents. Compounds showing most promise are ruthenium complexes which are structurally different but have the same stability and show similar modes of binding to DNA. The last part of the introduction deals with the development of gold(I) and gold(III) complexes, the main topics of the research described in this thesis. Chapter 2 reports on the attempted preparation of dppf and dippf gold(III) complexes. However, the reaction of these diphosphines with H[AuCl4] and Na[AuCl4] all led to isolation of gold(I) complexes (dppf)Au2X2 (X = Cl (1), Br (3)) and (dippf)Au2X2 (X = Cl (2), Br (4)). In an attempt to oxidize the gold(I) complexes, (dppf)Au2Br2 (3) and (dippf)Au2Br2 (4) were reacted with excess bromine yielding two new complexes (C5H4Br3)(PR2)AuBr (R = Ph, 5; R = i-Pr, 6). This bromination reaction could be extended to the ligands and bromination of the free diphosphinoferrocene ligands produced the expected brominated cyclopentenes (C5H4Br3)(PR2) (R = Ph, 7; R = i-Pr, 8) in good yields. However, these could not be complexed to gold due to reduced basicity of 7 and 8. When the bromination was performed under wet aerobic conditions the oxidized pseudo-centrosymmetric product, [doppf][FeBr4] (9) {doppf = 1,1’-bis(oxodiphenylphosphino)ferrocene, was obtained as the major product. Solid-state structures of 1, 2, 4, 6, and 9 were established by means of single-crystal X-ray crystallography. Chapter 3 reports on the use of chiral Josiphos and Walphos diphosphine ligands to form palladium, platinum and gold complexes. The platinum complexes were prepared by reacting the ligands with [PtCl2(cod)] while the palladium complexes were prepared from [PdCl2(NCMe)2]. The complexes obtained had the general formula [MCl2(P-P)], where M = Pd, Pt, and P-P = Josiphos or Walphos ligand, and were obtained in good yields. The X-ray structures of a palladium(II) and a platinum(II) complex of the same Josiphos ligand were determined. The Josiphos complexes 12 and 14 show good solubility in common solvents. Furthermore, the complexes remained soluble and stable in a 40:60 water:DMSO mixture. The Walphos complexes 13 and 15 rapidly precipitated under the same conditions. In line with this limited solubility 13 and 15 showed minimal cytotoxic effects when compared to their Josiphos counterparts 12 and 14 whose cytotoxic effects (in terms of IC50 values ) were six to seven times less than cisplatin. Reaction of the Walphos ligand and H[AuCl4] in a 1:1 ratio gave a dinuclear gold(I) complex 18 while the same reaction with Josiphos gave a mixture of intractable materials. However a 1:1 reaction of the Josiphos with AuCl(tht) gave a mononuclear three-coordinate gold(I) complex 16. A P^N chiral ligand comprising of a diphenylphosphine and a pyrazole moiety was also prepared and was complexed with AuCl(tht) to give a phosphine bound gold(I) complex 19. The structure of this complex was determined by X-ray studies. From the studies it became evident that apart from increasing the basicity of compound the pyrazolyl moiety remains dangling and the complex shows bond parameters similar to those observed with monophosphine ferrocenyl complexes. Chapter 4 reports on the bidentate and monodentate gold(III) complexes based on the (pyrazolylmethyl)pyridine ligands together with their platinum(II) complexes. The denticity of the complexes depended on the position of the pyrazolyl moiety relative to the pyridine nitrogen. When ortho-substituted ligands were reacted in a 1:1 ratio with H[AuCl4] in a mixture of water and ethanol at room temperature, bidentate cationic complexes of the general formula [AuCl2(PyCH2R2pz)][X], where R = Me (20), X = AuCl4-; R = Ph (21), X = Cl-; t-Bu (22), X= Cl- and p-tol (23), X = AuCl4-, were obtained. When para-substituted ligands were used under same reaction conditions, neutral monodentate complexes [AuCl3(PyCH2R2pz)], where R = Me (24) and R = Ph (25), were obtained. Platinum(II) complexes were obtained using K2[PtCl4] in a mixture of water and ethanol under reflux, and affords neutral complexes of the type [PtCl2(PyCH2R2pz)], where R = Me (27), Ph (28), t-Bu (29) and p-tol (30). When acetone was used instead of ethanol monoacetonylplatinum(II) complex (29a) was formed and on prolonged heating formation of the diacetonyl complex (28b) was observed. Both the platinum and the gold complexes were evaluated for their anti-cancer potency. The gold(III) complexes were devoid of any activity while the platinum complex 30 showed activity 8 times lower than cisplatin. The structures of 23, 25, 28, 29 and 29a were determined from single-crystal X-ray diffraction studies. In Chapter 5, tridentate complexes based on bis(pyrazolylethyl)amine are reported. These were prepared with the aim of improving water-solubility and cytotoxicity of the resulting complexes. New synthetic methods for preparation of the ligands NH(CH2CH2pz)2 (R = Me (L7), H (L8), t-Bu (L9)) under mild reaction conditions were developed albeit the yields obtained were generally low. The reaction of these ligands with H[AuCl4] gave corresponding tridentate dicationic gold(III) complexes [NH(CH2CH2pz)2][X]2 (R = Me (31), H (32), X = AuCl4 , and R = t-Bu (33), X = Cl-). Despite the ligands stabilizing the gold(III) ion, they showed no solubility in water. In an attempt to make the ligand system water soluble, a thiocarbamate analogue with pyrazolyl groups replaced by hydroxyl groups was prepared. However the resulting gold(III) complex [Au{CS2N(CH2CH2OH)2}2][AuCl2] (34) was found to be only soluble in DMSO.
- Full Text:
- Authors: Segapelo, Tebogo Vincent
- Date: 2010-03-16T07:30:49Z
- Subjects: Gold compounds , Platinum compounds , Gold - Therapeutic use , Platinum - Therapeutic use , Complex compounds synthesis , Cancer treatment
- Type: Thesis
- Identifier: uj:6682 , http://hdl.handle.net/10210/3086
- Description: Ph.D. , Chapter 1 presents a brief overview on the development of platinum, ruthenium and gold anti-cancer complexes. The clinical success of cisplatin has been a tremendous impetus for the design of metal-based antitumor drugs. Its mechanism of action is therefore briefly discussed, as well as the toxic side effects of its clinical use and the cellular resistance to the drug. It is its side effects and drug resistance that have stimulated the development of cisplatin analogues and other metal based anti-cancer agents. Compounds showing most promise are ruthenium complexes which are structurally different but have the same stability and show similar modes of binding to DNA. The last part of the introduction deals with the development of gold(I) and gold(III) complexes, the main topics of the research described in this thesis. Chapter 2 reports on the attempted preparation of dppf and dippf gold(III) complexes. However, the reaction of these diphosphines with H[AuCl4] and Na[AuCl4] all led to isolation of gold(I) complexes (dppf)Au2X2 (X = Cl (1), Br (3)) and (dippf)Au2X2 (X = Cl (2), Br (4)). In an attempt to oxidize the gold(I) complexes, (dppf)Au2Br2 (3) and (dippf)Au2Br2 (4) were reacted with excess bromine yielding two new complexes (C5H4Br3)(PR2)AuBr (R = Ph, 5; R = i-Pr, 6). This bromination reaction could be extended to the ligands and bromination of the free diphosphinoferrocene ligands produced the expected brominated cyclopentenes (C5H4Br3)(PR2) (R = Ph, 7; R = i-Pr, 8) in good yields. However, these could not be complexed to gold due to reduced basicity of 7 and 8. When the bromination was performed under wet aerobic conditions the oxidized pseudo-centrosymmetric product, [doppf][FeBr4] (9) {doppf = 1,1’-bis(oxodiphenylphosphino)ferrocene, was obtained as the major product. Solid-state structures of 1, 2, 4, 6, and 9 were established by means of single-crystal X-ray crystallography. Chapter 3 reports on the use of chiral Josiphos and Walphos diphosphine ligands to form palladium, platinum and gold complexes. The platinum complexes were prepared by reacting the ligands with [PtCl2(cod)] while the palladium complexes were prepared from [PdCl2(NCMe)2]. The complexes obtained had the general formula [MCl2(P-P)], where M = Pd, Pt, and P-P = Josiphos or Walphos ligand, and were obtained in good yields. The X-ray structures of a palladium(II) and a platinum(II) complex of the same Josiphos ligand were determined. The Josiphos complexes 12 and 14 show good solubility in common solvents. Furthermore, the complexes remained soluble and stable in a 40:60 water:DMSO mixture. The Walphos complexes 13 and 15 rapidly precipitated under the same conditions. In line with this limited solubility 13 and 15 showed minimal cytotoxic effects when compared to their Josiphos counterparts 12 and 14 whose cytotoxic effects (in terms of IC50 values ) were six to seven times less than cisplatin. Reaction of the Walphos ligand and H[AuCl4] in a 1:1 ratio gave a dinuclear gold(I) complex 18 while the same reaction with Josiphos gave a mixture of intractable materials. However a 1:1 reaction of the Josiphos with AuCl(tht) gave a mononuclear three-coordinate gold(I) complex 16. A P^N chiral ligand comprising of a diphenylphosphine and a pyrazole moiety was also prepared and was complexed with AuCl(tht) to give a phosphine bound gold(I) complex 19. The structure of this complex was determined by X-ray studies. From the studies it became evident that apart from increasing the basicity of compound the pyrazolyl moiety remains dangling and the complex shows bond parameters similar to those observed with monophosphine ferrocenyl complexes. Chapter 4 reports on the bidentate and monodentate gold(III) complexes based on the (pyrazolylmethyl)pyridine ligands together with their platinum(II) complexes. The denticity of the complexes depended on the position of the pyrazolyl moiety relative to the pyridine nitrogen. When ortho-substituted ligands were reacted in a 1:1 ratio with H[AuCl4] in a mixture of water and ethanol at room temperature, bidentate cationic complexes of the general formula [AuCl2(PyCH2R2pz)][X], where R = Me (20), X = AuCl4-; R = Ph (21), X = Cl-; t-Bu (22), X= Cl- and p-tol (23), X = AuCl4-, were obtained. When para-substituted ligands were used under same reaction conditions, neutral monodentate complexes [AuCl3(PyCH2R2pz)], where R = Me (24) and R = Ph (25), were obtained. Platinum(II) complexes were obtained using K2[PtCl4] in a mixture of water and ethanol under reflux, and affords neutral complexes of the type [PtCl2(PyCH2R2pz)], where R = Me (27), Ph (28), t-Bu (29) and p-tol (30). When acetone was used instead of ethanol monoacetonylplatinum(II) complex (29a) was formed and on prolonged heating formation of the diacetonyl complex (28b) was observed. Both the platinum and the gold complexes were evaluated for their anti-cancer potency. The gold(III) complexes were devoid of any activity while the platinum complex 30 showed activity 8 times lower than cisplatin. The structures of 23, 25, 28, 29 and 29a were determined from single-crystal X-ray diffraction studies. In Chapter 5, tridentate complexes based on bis(pyrazolylethyl)amine are reported. These were prepared with the aim of improving water-solubility and cytotoxicity of the resulting complexes. New synthetic methods for preparation of the ligands NH(CH2CH2pz)2 (R = Me (L7), H (L8), t-Bu (L9)) under mild reaction conditions were developed albeit the yields obtained were generally low. The reaction of these ligands with H[AuCl4] gave corresponding tridentate dicationic gold(III) complexes [NH(CH2CH2pz)2][X]2 (R = Me (31), H (32), X = AuCl4 , and R = t-Bu (33), X = Cl-). Despite the ligands stabilizing the gold(III) ion, they showed no solubility in water. In an attempt to make the ligand system water soluble, a thiocarbamate analogue with pyrazolyl groups replaced by hydroxyl groups was prepared. However the resulting gold(III) complex [Au{CS2N(CH2CH2OH)2}2][AuCl2] (34) was found to be only soluble in DMSO.
- Full Text:
- «
- ‹
- 1
- ›
- »