Comparative study in the performance of bioelectrochemical properties for microbial fuel cells
- Authors: Mphaphuli, Takalani
- Date: 2017
- Subjects: Microbial fuel cells , Bioelectrochemistry
- Language: English
- Type: Masters (Thesis)
- Identifier: http://hdl.handle.net/10210/413163 , uj:34798
- Description: Abstract: A microbial fuel cell is the energy harvesting technology being studied; this technology converts various substrates, water-based organic fuels, and wastewater into electrical energy by the catalytic reaction of microorganism. The research seeks to establish a comparison in the performance of bioelectrochemical properties (BEP) for microbial fuel cells (MFCs). The experiment set-up consisted of two identical MFCs; one with 30% PTFE coated carbon cloth and the other with untreated carbon cloth (AvCarb 1071HCB). Type 304 Stainless steel mesh #20 cathode electrode was used and then sectioned to a surface area of 36 cm2. Proton exchange membrane and Nafion membrane both were sectioned to the similar surface area of 36cm2. These membranes were of different thicknesses, that is; Nafion (0.05mm, 0.18mm respectively) and CMI-7000S (0.45mm thickness). The type of MFC used was the double-chamber MFC, which consisted of the anode and cathode chamber. The anode and cathode chamber was immersed in the open water bath regulated at a temperature of 350C. On the start-up, the anode chamber was fed with 800ml of municipality wastewater and 90ml of primary sludge collected from the primary clarifier effluent plant in municipality wastewater treatment plant. On refeeding after seven (7) days, 87.5ml (1/4 of the total solution) was removed and 87.5ml of the fresh wastewater was added at the same time and 100ml of sludge was also loaded on the anode chamber with a residence time of four (4) weeks. The coated anode (30% PTFE carbon cloth) is more efficient in generating power than the untreated anode; however, there is a limitation on the thickness of the membrane. The performance of individual membrane varies significantly with the type and thickness of the membrane and this directly affects the overall performance of MFC. , M.Tech. (Engineering Metallurgy)
- Full Text:
- Authors: Mphaphuli, Takalani
- Date: 2017
- Subjects: Microbial fuel cells , Bioelectrochemistry
- Language: English
- Type: Masters (Thesis)
- Identifier: http://hdl.handle.net/10210/413163 , uj:34798
- Description: Abstract: A microbial fuel cell is the energy harvesting technology being studied; this technology converts various substrates, water-based organic fuels, and wastewater into electrical energy by the catalytic reaction of microorganism. The research seeks to establish a comparison in the performance of bioelectrochemical properties (BEP) for microbial fuel cells (MFCs). The experiment set-up consisted of two identical MFCs; one with 30% PTFE coated carbon cloth and the other with untreated carbon cloth (AvCarb 1071HCB). Type 304 Stainless steel mesh #20 cathode electrode was used and then sectioned to a surface area of 36 cm2. Proton exchange membrane and Nafion membrane both were sectioned to the similar surface area of 36cm2. These membranes were of different thicknesses, that is; Nafion (0.05mm, 0.18mm respectively) and CMI-7000S (0.45mm thickness). The type of MFC used was the double-chamber MFC, which consisted of the anode and cathode chamber. The anode and cathode chamber was immersed in the open water bath regulated at a temperature of 350C. On the start-up, the anode chamber was fed with 800ml of municipality wastewater and 90ml of primary sludge collected from the primary clarifier effluent plant in municipality wastewater treatment plant. On refeeding after seven (7) days, 87.5ml (1/4 of the total solution) was removed and 87.5ml of the fresh wastewater was added at the same time and 100ml of sludge was also loaded on the anode chamber with a residence time of four (4) weeks. The coated anode (30% PTFE carbon cloth) is more efficient in generating power than the untreated anode; however, there is a limitation on the thickness of the membrane. The performance of individual membrane varies significantly with the type and thickness of the membrane and this directly affects the overall performance of MFC. , M.Tech. (Engineering Metallurgy)
- Full Text:
Comparative study in the performance of bioelectrochemical properties for microbial fuel cells
- Mphaphuli, Takalani, Du Plessis, Sydney
- Authors: Mphaphuli, Takalani , Du Plessis, Sydney
- Date: 2021
- Subjects: Microbial fuel cell , Wastewater , Power density
- Language: English
- Type: Journal article
- Identifier: http://hdl.handle.net/10210/493740 , uj:45119 , Citation: Mphaphuli, T. & Du Plessis, S. 2021. Comparative study in the performance of bioelectrochemical properties for microbial fuel cells.
- Description: Abstract: A microbial fuel cell is the energy harvesting technology being studied; this technology converts various substrates, water-based organic fuels, and wastewater into electrical energy by the catalytic reaction of microorganism. The research seeks to establish a comparison in the performance of bioelectrochemical properties (BEP) for microbial fuel cells (MFCs). The experiment set-up consisted of two identical MFCs; one with 30% PTFE coated carbon cloth and the other with untreated carbon cloth (AvCarb 1071HCB). Type 304 Stainless steel mesh #20 cathode electrode was used and then sectioned to a surface area of 36 cm2. Proton exchange membrane and Nafion membrane both were sectioned to a similar surface area of 36cm2. These membranes were of different thicknesses, that is; Nafion (0.05mm, 0.18mm respectively) and CMI-7000S (0.45mm thickness). The type of MFC used was the double-chamber MFC, which consisted of the anode and cathode chamber. The anode and cathode chamber were immersed in the open water bath regulated at a temperature of 350C. On the start-up, the anode chamber was fed with 800ml of municipality wastewater and 90ml of primary sludge collected from the primary clarifier effluent plant in the municipality wastewater treatment plant. On re-feeding after seven (7) days, 87.5ml (1/4 of the total solution) was removed and 87.5ml of the fresh wastewater was added at the same time and 100ml of sludge was also loaded on the anode chamber with a residence time of four (4) weeks. The coated anode (30% PTFE carbon cloth) is more efficient in generating power than the untreated anode; however, there is a limitation on the thickness of the membrane. The performance of individual membrane varies significantly with the type and thickness of the membrane and this directly affects the overall performance of MFC.
- Full Text:
- Authors: Mphaphuli, Takalani , Du Plessis, Sydney
- Date: 2021
- Subjects: Microbial fuel cell , Wastewater , Power density
- Language: English
- Type: Journal article
- Identifier: http://hdl.handle.net/10210/493740 , uj:45119 , Citation: Mphaphuli, T. & Du Plessis, S. 2021. Comparative study in the performance of bioelectrochemical properties for microbial fuel cells.
- Description: Abstract: A microbial fuel cell is the energy harvesting technology being studied; this technology converts various substrates, water-based organic fuels, and wastewater into electrical energy by the catalytic reaction of microorganism. The research seeks to establish a comparison in the performance of bioelectrochemical properties (BEP) for microbial fuel cells (MFCs). The experiment set-up consisted of two identical MFCs; one with 30% PTFE coated carbon cloth and the other with untreated carbon cloth (AvCarb 1071HCB). Type 304 Stainless steel mesh #20 cathode electrode was used and then sectioned to a surface area of 36 cm2. Proton exchange membrane and Nafion membrane both were sectioned to a similar surface area of 36cm2. These membranes were of different thicknesses, that is; Nafion (0.05mm, 0.18mm respectively) and CMI-7000S (0.45mm thickness). The type of MFC used was the double-chamber MFC, which consisted of the anode and cathode chamber. The anode and cathode chamber were immersed in the open water bath regulated at a temperature of 350C. On the start-up, the anode chamber was fed with 800ml of municipality wastewater and 90ml of primary sludge collected from the primary clarifier effluent plant in the municipality wastewater treatment plant. On re-feeding after seven (7) days, 87.5ml (1/4 of the total solution) was removed and 87.5ml of the fresh wastewater was added at the same time and 100ml of sludge was also loaded on the anode chamber with a residence time of four (4) weeks. The coated anode (30% PTFE carbon cloth) is more efficient in generating power than the untreated anode; however, there is a limitation on the thickness of the membrane. The performance of individual membrane varies significantly with the type and thickness of the membrane and this directly affects the overall performance of MFC.
- Full Text:
- «
- ‹
- 1
- ›
- »