Characterization of functionally graded commercially pure titanium (CPTI) and titanium carbide (TiC) powders
- Authors: Akinlabi, Esther Titilayo , Akinlabi, Stephen A.
- Date: 2015-07-01
- Subjects: Functional graded materials , Laser metal deposition , Titanium , Titanium carbide
- Type: Article
- Identifier: uj:5136 , ISBN 9789881404701 , http://hdl.handle.net/10210/14102
- Description: Functionally Graded Materials (FGM) are advanced materials fabricated using additive manufacturing techniques. It belongs to a class of advanced material characterization in which the properties of the material composition is varied. The resulting property of the composite is always different from the properties of the individual material employed in the formation of the composite. They are known to also exhibit good mechanical and chemical properties and as such, are used for different industrial applications. One of the techniques employed in the fabrication of FGMs is called Laser Metal Deposition (LMD) technique. It uses laser beam to melt powder material on a substrate forming a melt pool that solidifies upon cooling. This paper reports on the material characterization of functionally graded Titanium and Titanium Carbide (TiC) powders deposited on Titanium substrate by laser metal deposition approach. The formed deposits were fabricated by varying the processing parameters such as laser power, scanning speed and the powder flow rate. From the result obtained, the microstructures showed that the laser power has much influence on the grain growth of the material. In addition, with the SEM analysis of the microstructure since the percentages of the titanium and titanium carbide were varied, it was observed that the sharp boundaries of the Titanium Carbide were reduced greatly and this resulting effect can be attributed to the thermal effect of the laser. The microstructures further revealed that as the percentage of TiC decreases, it becomes more difficult to see the TiC as a different material in the composite, emphasizing this as one of the best characteristics of functionally graded materials, which is the elimination of sharp interfaces and layers. Furthermore, it was observed that the laser power has great influence on the evolving hardness of the material compared to the TiC content.
- Full Text:
Laser forming of titanium and its alloys – an overview
- Authors: Akinlabi, Esther Titilayo , Shukla, Mukul , Akinlabi, Stephen A.
- Date: 2012
- Subjects: Titanium , Titanium alloy , Laser beam forming
- Type: Article
- Identifier: uj:5334 , ISSN 2070-3740 , http://hdl.handle.net/10210/8877
- Description: Laser beam forming is a novel technique developed for the joining of metallic components. In this study, an overview of the laser beam forming process, areas of application, the basic mechanisms of the laser beam forming process, some recent research studies and the need to focus more research effort on improving the laser-material interaction of laser beam forming of titanium and its alloys are presented.
- Full Text:
The influence of scanning speed on laser metal deposition of Ti/TiC powders
- Authors: Sobiyi, K. K. , Akinlabi, Esther Titilayo , Akinlabi, Stephen A.
- Date: 2017
- Subjects: Titanium , Lasers , Metal deposition
- Language: English
- Type: Article
- Identifier: http://hdl.handle.net/10210/241302 , uj:24840 , Citation: Sobiyi, K.K. 2017. The influence of scanning speed on laser metal deposition of Ti/TiC powders.
- Description: Abstract: This paper describes the experimental work performed on laser metal deposition (LMD) of titanium carbide powders on pure titanium substrate. The understanding the effect of LMD processing parameters is vital in controlling the properties of the final product fabricated from the LMD process. The objective of the study is to characterize the influence of laser scanning speed of metal deposition of titanium and titanium carbide powders on pure titanium substrate. Microstructural characterization results showed that the substrate is characterized by two-phase morphology; alpha and beta phase. Deposit zone microstructures showed that the grains are of continuous columnar in nature. Heat affected zone region grain areas appear to decrease with increasing in scanning speed for different samples at different scanning speeds. The height of samples at different scanning was observed to decrease with increase in scanning speed. Microhardness results showed that the hardness of the deposits is greater than the hardness of the substrate. Wear resistance performance results showed that the coefficient of friction of substrate is greater than the coefficient of friction of the deposit samples. Wear volume loss of material of the substrate is higher than the deposits. The deposit contains titanium carbide and, as such, this powder has improved the wear resistance performance of the substrate.
- Full Text: