Heat transfer performance in 3D internally finned heat pipe
- Authors: Liao, Quan , Jen, Tien-Chien , Chen, Qing-hua , Li, Longjian , Cui, Wenzhi
- Date: 2007
- Subjects: Heat pipes , Heat transfer , Finned tubes
- Type: Article
- Identifier: uj:5276 , http://hdl.handle.net/10210/14945
- Description: An experimental study of heat transfer performance in 3D internally finned steel-water heat pipe was carried out in this project. All the main parameters that can significantly influence the heat transfer performance of heat pipe, such as working temperature, heat flux, inclination angle, working fluid fill ratio (defined by the evaporation volume), have been examined. Within the experimental conditions (working temperature 40 C–95 C, heat flux 5.0 kw/m2–40 kw/m2, inclination angle 2–90 ), the evaporation and condensation heat transfer coefficients in 3D internally finned heat pipe are found to be increased by 50–100% and 100–200%, respectively, as compared to the smooth gravity-assisted heat pipe under the same conditions. Therefore, it is concluded that the special structures of 3D-fins on the inner wall can significantly reduce the internal thermal resistance of heat pipe and then greatly enhance its heat transfer performance.
- Full Text:
Heat transfer augmentation in 3D internally finned and micro-finned helical tube
- Authors: Li, Longjian , Cui, Wenzhi , Liao, Quan , Mingdao, Xin , Jen, Tien-Chien , Chen, Qinghua
- Date: 2005
- Subjects: Helical tubes , Finned tubes , Heat transfer
- Type: Journal
- Identifier: uj:5263 , http://hdl.handle.net/10210/14932
- Description: Experiments are performed to investigate the single-phase flow and flow-boiling heat transfer augmentation in 3D internally finned and micro-finned helical tubes. The tests for single-phase flow heat transfer augmentation are carried out in helical tubes with a curvature of 0.0663 and a length of 1.15 m, and the examined range of the Reynolds number varies from 1000 to 8500. Within the applied range of Reynolds number, compared with the smooth helical tube, the average heat transfer augmentation ratio for the two finned tubes is 71% and 103%, but associated with a flow resistance increase of 90% and 140%, respectively. A higher fin height gives a higher heat transfer rate and a larger friction flow resistance. The tests for flow-boiling heat transfer are carried out in 3D internally micro-finned helical tube with a curvature of 0.0605 and a length of 0.668 m. Compared with that in the smooth helical tube, the boiling heat transfer coefficient in the 3D internally micro-finned helical tube is increased by 40–120% under varied mass flow rate and wall heat flux conditions, meanwhile, the flow resistance is increased by 18–119%, respectively.
- Full Text: