Formation of major fold types during distinct geological events in the central zone of the Limpopo Belt, South Africa: new structural, metamorphic and geochronologic
- Authors: Boshoff, Rene
- Date: 2009-01-27T07:18:07Z
- Subjects: Geology , Structural geology , Metamorphism (Geology) , Folds (Geology) , Geological time , Limpopo Belt (South Africa)
- Type: Thesis
- Identifier: uj:14827 , http://hdl.handle.net/10210/1951
- Description: M.Sc. , The Limpopo Complex (LC) of southern Africa is one of the best-studied Precambrian granulite facies terrains in the world, yet workers still disagree on fundamental aspects of the geological evolution of this complexly deformed high-grade terrain. Most workers agree that the two marginal zones were exhumed in the late-Archaean, but disagree on the timing of major tectono-metamorphic events that affected the Central Zone (CZ) of Limpopo Belt, and the mechanism/s of its formation. There are currently two main schools of thought: The first school regards the LC as a late-Archaean orogenic zone that resulted from a north-south collision of the Zimbabwe and Kaapvaal cratons. Granitic plutons throughout the entire LC are considered to be accurate time-markers for this orogeny. The second school suggests that the CZ evolved as a result of a major Paleoproterozoic tectono-metamorphic event based mainly on the interpretation of metamorphic mineral ages. The present study focuses on two aims, namely (i) to provide a synthesis of published data as a basis to understand the ongoing age controversy concerning the evolution of the CZ, and (ii) to show that specific fold types in the CZ can be related to either the late-Archaean or the Paleoproterozoic event. New age, structural, metamorphic, and petrographic data are presented to show that (i) major sheath folds reflect the peak tectono-metamorphic event that affected the CZ in the late-Archaean, while (ii) major cross folds developed as a result of a transpressive event in the Paleoproterozoic. The age of formation of the Avoca sheath fold located about 40 km west of Alldays is accurately constrained by the age of emplacement of different structural varieties of precursors to the Singelele Gneiss: penetratively deformed syn- to late-tectonic Singelele gneisses with a zircon SHRIMP age of 2651 ± 8 Ma, date the time of formation of the sheath fold that is characterized by a single population of linear elements that define the central fold axis. The Avoca sheath fold documents top-to-the-NNE movement of material during the exhumation of the high-grade CZ rocks. Weakly foliated late-tectonic L-tectonites with a zircon SHRIMP age of 2626.8 ± 5.4 Ma, outcrop near the centre of the sheath fold, and provide a minimum age for the shear deformation event. An almost undeformed (post-tectonic) variety of the Singelele Gneiss was emplaced after the shear event. A detailed metamorphic study of metapelitic gneisses from the large Baklykraal cross fold, located about 20 km east of the Avoca sheath fold, documents a single decompression-cooling (DC) P-T path for the evolution of this structure. Three studied metapelitic samples characterized by a single generation of garnet provide a Pb-Pb age of 2023 ± 11 Ma, that accurately constrain the time of formation of this major fold to the Paleoproterozoic. A metapelitic sample characterized by two generations of garnet provide a slightly older Pb-Pb age of 2173 ± 79 Ma, that is interpreted to also reflect the late-Archaean event. The Baklykraal cross fold is characterized by two populations of linear elements: the one population defines the shallow N-S oriented fold axes, while the second population is associated with top-to-the-NNE movement of material during exhumation, resulting in folds with a nappe-like geometry. A DC P-T path for the Campbell cross fold (Van Kal, 2004) located just west of Musina, suggests that cross folds developed under significantly lower P-T conditions than is the case with sheath folds, providing an explanation for the lack of significant anatexis associated with the Paleoproterozoic event. The late-Archaean orogeny in contrast, was accompanied by widespread anatexis during a major magmatic event that is characterized by an abnormal high radiogenic signature. This study, for the first time, provides evidence that link specific fold types, and thus deformational events, to different tectono-metamorphic events. The main conclusion is that the CZ was exhumed as the result of two distinct orogenies, one in the late-Archaean, and the other in the Paleoproterozoic.
- Full Text:
Provenance of the Neoproterozoic to early Palaeozoic successions of the Kango Inlier, Saldania Belt, South Africa
- Authors: Naidoo, Thanusha
- Date: 2009-04-28T06:57:55Z
- Subjects: Geology , Petrology , Geochemistry , Geological time , Cape of Good Hope (South Africa)
- Type: Thesis
- Identifier: uj:8308 , http://hdl.handle.net/10210/2437
- Description: M.Sc. , The configuration of the supercontinent Rodinia, at the end of the Mesoproterozoic to the beginning of the Neoproterozoic (1100-750 Ma), and its subsequent break up into cratonic fragments that would later result in the formation of Gondwana (Early Palaeozoic), is still not completely understood. This is largely due to ambiguity surrounding relationships between cratons, craton evolution and timing of significant tectonic or sedimentary events. Particular to this study is the evolution and palaeogeographic history of the Kalahari Craton and a comprehensive provenance analysis of Neoproterozoic to early Palaeozoic clastic sedimentary rocks from the Kango Inlier (Saldania Belt, South Africa). This includes the Cango Caves and Kansa Groups as well as the Schoemanspoort and the adjacent Peninsula Formation (Table Mountain Group, Cape Supergroup). A well established lithostratigraphy, in addition to recent establishment of age constraints by UPb zircon dating and microfossil evidence, allowed for strategic sampling with the objective of gaining insight to the crustal evolution of SW Gondwana. In this study, a progression from immature, moderately altered rocks in the Cango Caves Group (Upper Neoproterozoic) to mature, strongly altered rocks in the Lower Palaeozoic Kansa Group and overlying formations is observed. Thus, rapid sedimentation of the former is anticipated, while the subsequent formations developed at a passive/rifted margin culminating in the laterally extensive deposition of the Peninsula Formation. Ongoing extensional movement is evident due to chronologically deeper-water facies and the progressive influence of a less fractionated component in the Cango Caves Group, particularly in the Huis Rivier Formation. The association of these rocks with an active margin is not certain since index trace element concentrations are too high for typical arc terranes. Thus, the mixing of a younger (570-600 Ma) magmatic source (close to an active margin) with mafic and felsic rocks of the older Mesoproterozoic Natal- Namaqua Mobile Belt (NMB) is the most likely possibility. A maximum, pre-Cape Granite age of 571 Ma can be assigned to the Huis Rivier Formation (Cango Caves Group) by detrital zircon dating, and thus correlation with the Malmesbury Group can be made. Ediacaran age zircons might be related to the active continental margin (Trans Antarctic Orogen) surrounding southern Gondwana, but this is still hypothetical. The post-Cape Granite Kansa Group and overlying Schoemanspoort Formation were most likely deposited as basin infill subsequent to folding and transtensional tectonics affecting the underlying Cango Caves Group. The Kansa Group may be comparable with the Klipheuwel Formation (southwest South Africa) in terms of its stratigraphic position beneath the Table Mountain Group. Deposition of the Table Mountain Group is much younger than previously believed in light of Ordovician zircon ages (471, 485, 499 Ma) obtained from the underlying Kansa Group. However, the provenance of these thus far unheard of ages for magmatic events in South Africa is a matter of contention. The proximal Ordovician Ross-Delamerian Orogenic event in Antarctica is the most likely source. Peninsula Formation deposition represents a cover sequence i.e. the culmination of small isolated basins (e.g. the Kansa Group and lower Table Mountain Group) into a larger, laterally extensive basin where reworking played a dominant role. This basin is likely to be a rift-related. However, it is not clear which crustal entity rifted away from vi South Africa and if, during the Ordovician an, active continental margin further to the south - bridging the South American Famatina Orogen with the Ross-Delamerian arc in Antarctica - existed. The Natal-Namaqua Mobile Belt appears to be the predominant source throughout the succession as indicated by Nd-isotope data and zircon populations. This implies that simple crustal recycling of Natal-Namaqua basement (or rocks with similar Nd-isotope characteristics) led to the genesis of the magmatic material younger than 1 Ga, observed in this study.
- Full Text: