Multi-criteria analysis of different technologies for the bioenergy recovery from OFMSW
- Authors: Matheri, Anthony Njuguna , Mbohwa, Charles , Belaid, Mohamed , Seodigeng, Tumisang , Ngila, Jane Catherine
- Date: 2016
- Subjects: Anaerobic digester , Design , Bioenergy recovery
- Language: English
- Type: Conference proceedings
- Identifier: http://ujcontent.uj.ac.za8080/10210/377197 , http://hdl.handle.net/10210/214131 , uj:21242 , Citation: Matheri, A.N. et al. 2016. Multi-criteria analysis of different technologies for the bioenergy recovery from OFMSW.
- Description: Abstract: In this study, the multi-criteria analysis model is demonstrated for evaluation and technologies from municipal solid waste (MSW) in City of Johannesburg (CoJ), South Africa. The technologies evaluation and alternation criteria for multi-criteria decision analysis (MCDA) area characterized by reviewing the literature and consulting experts in the renewable energy and waste management. MCDA was the approach employed by decision makers to make recommendation on technique employed to select the most suitable biogas digester technology for organic fraction of municipal solid waste (OFMWS) originating from the city’s landfills base on scalability, relative cost prices, available, temperature regulation, agitation, ease of construction, operation and maintenance. The result for digester type indicated that the “complete mix, continuously stirred anaerobic digester” (CSAD) was preferred with 79% preference to other anaerobic digester technologies for energy recovery.
- Full Text:
Waste to energy bio-digester selection and design model for the organic fraction of municipal solid waste
- Authors: Matheri, Anthony Njuguna , Mbohwa, Charles , Ntuli, Freeman , Belaid, Mohamed , Seodigeng, Tumisang , Ngila, Jane Catherine , Njenga, Cecilia Kinuthia
- Date: 2017
- Subjects: Anaerobic digestion , Bio-digester , Mesophilic temperature
- Language: English
- Type: Article
- Identifier: http://hdl.handle.net/10210/250904 , uj:26157 , Citation: Matheri, A.N. et al. 2017. Waste to energy bio-digester selection and design model for the organic fraction of municipal solid waste.
- Description: Abstract: Please refer to full text to view abstract
- Full Text:
Design model selection and dimensioning of anaerobic digester for the OFMSW
- Authors: Matheri, Anthony Njuguna , Mbohwa, Charles , Seodigeng, Tumisang , Ngila, Jane Catherine
- Date: 2016
- Subjects: Belaid, Mohamed , Anaerobic , Co-digestion , Digester
- Language: English
- Type: Conference proceedings
- Identifier: http://hdl.handle.net/10210/214100 , uj:21236 , Citation: Matheri, A.N. et al. 2016. Design model selection and dimensioning of anaerobic digester for the OFMSW.
- Description: Abstract: In this study, we investigated the design model selection and dimensioning of the anaerobic digester for the codigestion of different organics fraction of municipal solid waste (OFMSW) originating from the city’s landfills. The waste quantification and characterization exercise were undertaken at the point of generation, so as to obtain the total amount of waste generated and to ascertain the waste composition. Via the application of the simple multi-attribute rating (SMART) technique of multiple-criteria decision analysis (MCDA) as a decision support tool base on cost, scalability, temperature regulation, ease of construction, operation, and maintenance. The most preferred model option for bioenergy design technology was selected from a list of potential alternatives available in the market. Continuous stirred tank reactor (digester) CSTR scored the highest with 79% and was selected for the design in OFMSW biogas production. The geometry of the biodigester parameters was comparable with the anaerobic digestion (AD) process.
- Full Text:
Mesophilic anaerobic co-digestion of cow dung, chicken droppings and grass clippings
- Authors: Matheri, Anthony Njuguna , Belaid, Mohamed , Seodigeng, Tumisang , Ngila, Catherine Jane , Mbohwa, Charles
- Date: 2016
- Subjects: Anaerobic digestion , Co-digestion , Mesophilic temperature
- Language: English
- Type: Conference proceedings
- Identifier: http://hdl.handle.net/10210/214105 , uj:21240 , Citation: Matheri, A.N. et al. 2016. Mesophilic anaerobic co-digestion of cow dung, chicken droppings and grass clippings.
- Description: Abstract: The main focus of this study was mesophilic anaerobic co-digestion of cow dung, chicken droppings and grass clippings using pilot bio-digesters. The biochemical methane potential (BMP) works under batch anaerobic digester operating in ambient mesophilic temperature of 35 oC and 37 0C and pH of 7 to generate biogas. The carbon/nitrogen (C/N) ratio for cow dung and chicken droppings was found to be 17.70 and 63.67 respectively and grass clippings to be 20.54. Through co-digestion in a ratio of 1:1, the C/N ratio for cow dung and grass clippings settled at 19.19 while that for chicken droppings and grass clippings settled at 20.49. The conversion rate of the reaction and biogas production increased with the increase in temperature and hydraulic retention time until an equilibrium state was achieved. At the temperature 37 OC, it was observed to be the suitable mesophilic temperature for anaerobic digestion due to high dissociation and collision leading to high rate of biogas production.
- Full Text: