Convective heat transfer in rotating isothermal ducts
- Authors: Jen, T.C , Hwang, G.-J. , Jen, T.-C.
- Date: 1990
- Subjects: Heat transfer , Isothermal ducts
- Type: Article
- Identifier: uj:5293 , ISSN 0017-9310 , http://hdl.handle.net/10210/14962
- Description: Please refer to full text to view abstract
- Full Text:
Performance alteration of standing-wave thermoacoustically-driven engine through resonator length adjustment
- Authors: Balonji, S. , Alcock, A.C. , Tartibu, L.K. , Jen, T.C
- Date: 2019
- Subjects: Thermo-acoustic , Sound-wave , DELTAEC
- Language: English
- Type: Conference proceedings
- Identifier: http://hdl.handle.net/10210/401878 , uj:33607 , Citation: Balonji, S. et al. 2019. Performance alteration of standing-wave thermoacoustically-driven engine through resonator length adjustment.
- Description: Abstract: The production of sound-wave in thermo-acoustic device is necessary to induce cooling or generate electricity. The magnitude of the sound-wave is normally proportional to the amount of heat provided to the device. The possibility to use waste heat in any locations can be enough to justify the use of thermo-acoustic technology for sustainable electricity generation or refrigeration. In this work, an adjustable thermoacoustically-driven engine has been developed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DELTAEC). Many studies have highlighted the relationship between the geometry of the stack and the performance of the device. Unlike previous studies, the resonator of this thermoacoustically-driven device, made of two portions, was adjusted. The performance of the device has been analysed in order to evaluate the influence of the alteration of the resonator on the heat-to-sound conversion. Performance indicators like the acoustic power, the temperature difference across the stack and the frequency of the sound-wave have been studied. This work point out the possibility to regulate the performance of thermo-acoustic engine by adjusting the geometry of the resonator.
- Full Text:
Thermal aspects of grinding with CBN wheels
- Authors: Lavine, A.S , Malkin, S , Jen, T.C
- Date: 1989
- Subjects: Grinding , Thermal damage , Grinding energy , Heat conduction
- Type: Article
- Identifier: uj:5300 , ISSN 0007-8506 , http://hdl.handle.net/10210/15080
- Description: Please refer to full text to view abstract
- Full Text: false
Turbulent heat transfer analysis of a three-dimensional array of perforated fins due to changes in perforation sizes
- Authors: Jen, T.C , Shaeri, Mohammad Reza , Jen, Tien-Chien
- Date: 2012
- Subjects: Heat transfer , Perforated fins
- Type: Article
- Identifier: uj:5261 , ISSN 1040-7782 , http://hdl.handle.net/10210/14930
- Description: Turbulent heat transfer characteristics of three-dimensional and rectangular perforated fins, including perforation like channels along the length of the fins, are investigated. Both dimensions and numbers of perforations are changed at the highest porosity in the study of Shaeri and Yaghoubi [7] to determine the effects of perforation sizes on the heat transfer characteristics of the perforated fins. Results show that at a specific porosity, a fin with a higher number of perforations enhances the heat transfer rate more efficiently. Also, total drag is not only remarkably lower in perforated fins compared with a solid fin, but also becomes smaller by decreasing the number of perforations.
- Full Text: