Laser forming of titanium and its alloys – an overview
- Akinlabi, Esther Titilayo, Shukla, Mukul, Akinlabi, Stephen A.
- Authors: Akinlabi, Esther Titilayo , Shukla, Mukul , Akinlabi, Stephen A.
- Date: 2012
- Subjects: Titanium , Titanium alloy , Laser beam forming
- Type: Article
- Identifier: uj:5334 , ISSN 2070-3740 , http://hdl.handle.net/10210/8877
- Description: Laser beam forming is a novel technique developed for the joining of metallic components. In this study, an overview of the laser beam forming process, areas of application, the basic mechanisms of the laser beam forming process, some recent research studies and the need to focus more research effort on improving the laser-material interaction of laser beam forming of titanium and its alloys are presented.
- Full Text:
- Authors: Akinlabi, Esther Titilayo , Shukla, Mukul , Akinlabi, Stephen A.
- Date: 2012
- Subjects: Titanium , Titanium alloy , Laser beam forming
- Type: Article
- Identifier: uj:5334 , ISSN 2070-3740 , http://hdl.handle.net/10210/8877
- Description: Laser beam forming is a novel technique developed for the joining of metallic components. In this study, an overview of the laser beam forming process, areas of application, the basic mechanisms of the laser beam forming process, some recent research studies and the need to focus more research effort on improving the laser-material interaction of laser beam forming of titanium and its alloys are presented.
- Full Text:
Microstructural and mechanical evaluation of laser-assisted cold sprayed bio-ceramic coatings : potential use for biomedical applications
- Tlotleng, Monnamme, Akinlabi, Esther Titilayo, Shukla, Mukul, Pityana, Sisa
- Authors: Tlotleng, Monnamme , Akinlabi, Esther Titilayo , Shukla, Mukul , Pityana, Sisa
- Date: 2014
- Subjects: Titanium , Laser power , Cold spray , Laser-assisted cold spray , Hydroxyapatite
- Type: Article
- Identifier: uj:5135 , ISSN 1544-1016 , http://hdl.handle.net/10210/14101
- Description: Bio-composite coatings of 20 wt.%, HAP and 80 wt.%, HAP were synthesized on Ti-6Al-4V substrates using LACS technique. The coatings were produced with a laser power of 2.5 kW, powder-laser spot trailing by 5 s. The coatings were analyzed for the microstructures, microhardness, composition, and bio-corrosion using SEM-EDS, XRD, hardness tester, and Metrohm PGSTAT101 machine. SEM images indicated least pores and crack-free coating with dark-spots of Ti-HAP for the 20 wt.%, HAP as opposed to the 80 wt.%, HAP coating which was solid, porous and finely cracked and had semi-melted Ti-HAP particles. The EDS mappings showed high content of HAP for the 80 wt.%, HAP coating. The diffraction patterns were similar, even though the Ti-HAP peak was broader in the 80 wt.%, HAP coating and the HAP intensities were lower for this coating except for the (004) peak. The hardness values taken at the interface inferred that the 80 wt.%, HAP coating was least bonded. It was possible to conclude that when this phase material increased the hardness dropped considerably. The bio-corrosion tests indicated that the presence of HAP in coating leads to a kinetically active coating as opposed to pure titanium coating.
- Full Text:
- Authors: Tlotleng, Monnamme , Akinlabi, Esther Titilayo , Shukla, Mukul , Pityana, Sisa
- Date: 2014
- Subjects: Titanium , Laser power , Cold spray , Laser-assisted cold spray , Hydroxyapatite
- Type: Article
- Identifier: uj:5135 , ISSN 1544-1016 , http://hdl.handle.net/10210/14101
- Description: Bio-composite coatings of 20 wt.%, HAP and 80 wt.%, HAP were synthesized on Ti-6Al-4V substrates using LACS technique. The coatings were produced with a laser power of 2.5 kW, powder-laser spot trailing by 5 s. The coatings were analyzed for the microstructures, microhardness, composition, and bio-corrosion using SEM-EDS, XRD, hardness tester, and Metrohm PGSTAT101 machine. SEM images indicated least pores and crack-free coating with dark-spots of Ti-HAP for the 20 wt.%, HAP as opposed to the 80 wt.%, HAP coating which was solid, porous and finely cracked and had semi-melted Ti-HAP particles. The EDS mappings showed high content of HAP for the 80 wt.%, HAP coating. The diffraction patterns were similar, even though the Ti-HAP peak was broader in the 80 wt.%, HAP coating and the HAP intensities were lower for this coating except for the (004) peak. The hardness values taken at the interface inferred that the 80 wt.%, HAP coating was least bonded. It was possible to conclude that when this phase material increased the hardness dropped considerably. The bio-corrosion tests indicated that the presence of HAP in coating leads to a kinetically active coating as opposed to pure titanium coating.
- Full Text:
- «
- ‹
- 1
- ›
- »