Gas flow rate and scanning speed influence on microstructure and microhardness property of laser metal deposited titanium-alloy
- Mahamood, Rasheedat M., Akinlabi, Esther Titilayo
- Authors: Mahamood, Rasheedat M. , Akinlabi, Esther Titilayo
- Date: 2017
- Subjects: Additive Manufacturing , Gas flow rate , Laser Metal Deposition
- Language: English
- Type: Conference proceedings
- Identifier: http://hdl.handle.net/10210/244682 , uj:25307 , Citation: Mahamood, R.M. & Akinlabi, E.T. 2017. Gas flow rate and scanning speed influence on microstructure and microhardness property of laser metal deposited titanium-alloy.
- Description: Abstract: Laser metal deposition process is an additive manufacturing technology that is capable of producing three dimensional components as well as repair of an existing worn out components. Processing parameters play an important role on the resulting properties of the processed materials using the laser metal deposition process. This study investigates the influence of gas flow rate and scanning speed on the microstructural and microhardness properties of laser metal deposited Ti6Al4V, an important titanium alloy used in the aerospace industries. Nd-YAG laser was used in this work with the maximum laser power of 4.0 kW. The laser power used was 3.0 kW and the powder flow rate of 2.88 g/min was maintained throughout the experiments. The scanning speed was set between 0.01 and 0.04 m/s while the gas flow rate was varied between 1 and 4 l/min. The microstructures of the samples were studied using optical microscope while the microhardness profiling was conducted using microhardness indenter. The results showed that, as the scanning speed was increased, the microstructure changed from fine basketweave structure to coarse martensitic structure. The microhardness was found to increase with increasing scanning speed. By increasing the gas flow rate results in decrease in microhardness values while the microstructure was observed to change from martensitic structure to basketweave structure. The result from this study is especially useful in repair application in order to achieve the desired properties.
- Full Text:
- Authors: Mahamood, Rasheedat M. , Akinlabi, Esther Titilayo
- Date: 2017
- Subjects: Additive Manufacturing , Gas flow rate , Laser Metal Deposition
- Language: English
- Type: Conference proceedings
- Identifier: http://hdl.handle.net/10210/244682 , uj:25307 , Citation: Mahamood, R.M. & Akinlabi, E.T. 2017. Gas flow rate and scanning speed influence on microstructure and microhardness property of laser metal deposited titanium-alloy.
- Description: Abstract: Laser metal deposition process is an additive manufacturing technology that is capable of producing three dimensional components as well as repair of an existing worn out components. Processing parameters play an important role on the resulting properties of the processed materials using the laser metal deposition process. This study investigates the influence of gas flow rate and scanning speed on the microstructural and microhardness properties of laser metal deposited Ti6Al4V, an important titanium alloy used in the aerospace industries. Nd-YAG laser was used in this work with the maximum laser power of 4.0 kW. The laser power used was 3.0 kW and the powder flow rate of 2.88 g/min was maintained throughout the experiments. The scanning speed was set between 0.01 and 0.04 m/s while the gas flow rate was varied between 1 and 4 l/min. The microstructures of the samples were studied using optical microscope while the microhardness profiling was conducted using microhardness indenter. The results showed that, as the scanning speed was increased, the microstructure changed from fine basketweave structure to coarse martensitic structure. The microhardness was found to increase with increasing scanning speed. By increasing the gas flow rate results in decrease in microhardness values while the microstructure was observed to change from martensitic structure to basketweave structure. The result from this study is especially useful in repair application in order to achieve the desired properties.
- Full Text:
Influence of laser power on microhardness and wear resistance properties of laser metal deposited 17-4 PH stainless steel
- Adeyemi, A., Akinlabi, Esther Titilayo, Mahamood, R.M.
- Authors: Adeyemi, A. , Akinlabi, Esther Titilayo , Mahamood, R.M.
- Date: 2018
- Subjects: Laser Metal Deposition , Laser Power , 17-4 PH stainless steel
- Language: English
- Type: Article
- Identifier: http://hdl.handle.net/10210/290921 , uj:31590 , Citation: Adeyemi, A., Akinlabi, E.T. & Mahamood, R.M. 2018. Influence of laser power on microhardness and wear resistance properties of laser metal deposited 17-4 PH stainless steel.
- Description: Abstract: This aim of this research is to investigate the impact of laser power on the hardness and the wear resistance properties of laser metal deposited 17-4 PH stainless steel. Hardness was studied using Zwick/Roell microhardness tester and the wear resistance property was carried out using ball-on-disc Anton Paar-tribometer wear tester. The study revealed that an irregular increase and decrease in the average hardness value and wear behaviour were observed. This could be attributed to the presence of copper precipitate which was more concentrate at the overlapping region because of the reheating activity that is happening between the succeeding and preceding track layers.
- Full Text:
- Authors: Adeyemi, A. , Akinlabi, Esther Titilayo , Mahamood, R.M.
- Date: 2018
- Subjects: Laser Metal Deposition , Laser Power , 17-4 PH stainless steel
- Language: English
- Type: Article
- Identifier: http://hdl.handle.net/10210/290921 , uj:31590 , Citation: Adeyemi, A., Akinlabi, E.T. & Mahamood, R.M. 2018. Influence of laser power on microhardness and wear resistance properties of laser metal deposited 17-4 PH stainless steel.
- Description: Abstract: This aim of this research is to investigate the impact of laser power on the hardness and the wear resistance properties of laser metal deposited 17-4 PH stainless steel. Hardness was studied using Zwick/Roell microhardness tester and the wear resistance property was carried out using ball-on-disc Anton Paar-tribometer wear tester. The study revealed that an irregular increase and decrease in the average hardness value and wear behaviour were observed. This could be attributed to the presence of copper precipitate which was more concentrate at the overlapping region because of the reheating activity that is happening between the succeeding and preceding track layers.
- Full Text:
Microstructural evolution of laser metal deposited 17-4 PH SS-tungsten composite with varying volume percent tungsten
- Adeyemi, A.A., Akinlabi, Esther Titilayo, Mahamood, R.M.
- Authors: Adeyemi, A.A. , Akinlabi, Esther Titilayo , Mahamood, R.M.
- Date: 2018
- Subjects: Laser Metal Deposition , Laser Power , Microstructure
- Language: English
- Type: Article
- Identifier: http://hdl.handle.net/10210/290972 , uj:31595 , Citation: Adeyemi, A.A., Akinlabi, E.T. & Mahamood, R.M. 2018. Microstructural evolution of laser metal deposited 17-4 PH SS-tungsten composite with varying volume percent tungsten.
- Description: Abstract: This study investigates the influence of quantity of tungsten powder on the microstructural evolution of 17-4 PH stainless steel-tungsten composite produced using laser metal deposition process. The 17-4 PH stainless steel and tungsten powders were deposited on 316 stainless steel substrate at laser power of 2600 W. The tungsten powder flow rate was varied between 0.5 rpm and 2.0 rpm while 17-4 PH stainless steel powder flow rate, the scanning speed, the gas flow rate and the laser spot size were fixed at 2.0 rpm, 0.5 m/s, 2.5 l/min and 2.0 mm respectively. Five (5) multiple track of 17-4 PH stainless steel and tungsten powder were deposited on 316 stainless steel of thickness 10 mm from different hopper at 50% overlapping percentage to produce 17-4 PH SS-W composite. During the microstructural study, it was observed that tungsten carbide has been precipitated in-situ and evenly dispersed in the 17-4 PH SS-W composite produced. SEM and EDS analysis also revealed the presence of BCC alpha (α) ferrite and FCC gamma (δ) ferrite with the presence of sigma (σ) phase precipitates.
- Full Text:
- Authors: Adeyemi, A.A. , Akinlabi, Esther Titilayo , Mahamood, R.M.
- Date: 2018
- Subjects: Laser Metal Deposition , Laser Power , Microstructure
- Language: English
- Type: Article
- Identifier: http://hdl.handle.net/10210/290972 , uj:31595 , Citation: Adeyemi, A.A., Akinlabi, E.T. & Mahamood, R.M. 2018. Microstructural evolution of laser metal deposited 17-4 PH SS-tungsten composite with varying volume percent tungsten.
- Description: Abstract: This study investigates the influence of quantity of tungsten powder on the microstructural evolution of 17-4 PH stainless steel-tungsten composite produced using laser metal deposition process. The 17-4 PH stainless steel and tungsten powders were deposited on 316 stainless steel substrate at laser power of 2600 W. The tungsten powder flow rate was varied between 0.5 rpm and 2.0 rpm while 17-4 PH stainless steel powder flow rate, the scanning speed, the gas flow rate and the laser spot size were fixed at 2.0 rpm, 0.5 m/s, 2.5 l/min and 2.0 mm respectively. Five (5) multiple track of 17-4 PH stainless steel and tungsten powder were deposited on 316 stainless steel of thickness 10 mm from different hopper at 50% overlapping percentage to produce 17-4 PH SS-W composite. During the microstructural study, it was observed that tungsten carbide has been precipitated in-situ and evenly dispersed in the 17-4 PH SS-W composite produced. SEM and EDS analysis also revealed the presence of BCC alpha (α) ferrite and FCC gamma (δ) ferrite with the presence of sigma (σ) phase precipitates.
- Full Text:
- «
- ‹
- 1
- ›
- »