A secure steganographic file system with non-duplicating properties
- Authors: Ellefsen, Ian David
- Date: 2012-09-11
- Subjects: Cryptography , Computer security , Data encryption (Computer science)
- Type: Thesis
- Identifier: uj:9972 , http://hdl.handle.net/10210/7367
- Description: M.Sc. , This dissertation investigates the possibility of a steganographic file system which does not have to duplicate hidden data in order to avoid "collisions" between the hidden and non-hidden data. This will ensure the consistency of the hidden data, and avoid unnecessary data duplication while at the same time providing an acceptable level of information security. The dissertation will critically analyse a number of existing steganographic file systems in order to determine the problems which are faced by this field. These problems will then be addressed, which will allow for the definition of a possible solution. In order to provide a more complete understanding of the implementation discussed in the latter part of this dissertation, a number of background concepts are discussed. This includes a discussion of file systems, cryptography, and steganography, each of which contributes to the body of knowledge required for later chapters. The latter part of this dissertation outlines the Secure Steganographic File System (SSFS). This implementation will attempt to effectively manage the storage of hidden data which is embedded within a host file system. The dissertation will outline how SSFS will allow fragments of hidden data to exist in any physical location on a storage device, while still maintaining a consistent file system structure. The dissertation will then critically analyse the impact of such a system, by examining the impact on the host file system's performance. This will allow the feasibility of such a system to be demonstrated.
- Full Text:
- Authors: Ellefsen, Ian David
- Date: 2012-09-11
- Subjects: Cryptography , Computer security , Data encryption (Computer science)
- Type: Thesis
- Identifier: uj:9972 , http://hdl.handle.net/10210/7367
- Description: M.Sc. , This dissertation investigates the possibility of a steganographic file system which does not have to duplicate hidden data in order to avoid "collisions" between the hidden and non-hidden data. This will ensure the consistency of the hidden data, and avoid unnecessary data duplication while at the same time providing an acceptable level of information security. The dissertation will critically analyse a number of existing steganographic file systems in order to determine the problems which are faced by this field. These problems will then be addressed, which will allow for the definition of a possible solution. In order to provide a more complete understanding of the implementation discussed in the latter part of this dissertation, a number of background concepts are discussed. This includes a discussion of file systems, cryptography, and steganography, each of which contributes to the body of knowledge required for later chapters. The latter part of this dissertation outlines the Secure Steganographic File System (SSFS). This implementation will attempt to effectively manage the storage of hidden data which is embedded within a host file system. The dissertation will outline how SSFS will allow fragments of hidden data to exist in any physical location on a storage device, while still maintaining a consistent file system structure. The dissertation will then critically analyse the impact of such a system, by examining the impact on the host file system's performance. This will allow the feasibility of such a system to be demonstrated.
- Full Text:
Critical information infrastructure protection for developing countries
- Authors: Ellefsen, Ian David
- Date: 2012-08-16
- Subjects: Computer crimes prevention , Computer security , Computer networks - Access control , Computer networks - Security measures
- Type: Thesis
- Identifier: uj:9498 , http://hdl.handle.net/10210/5928
- Description: D.Phil.(Computer Science) , In this thesis we will investigate the development of Critical Information Infrastructure Protection (CIIP) structures in the developing world. Developing regions are experiencing fast-paced development of information infrastructures, and improvements in related technologies such as Internet connectivity and wireless technologies. The use of these new technologies and the number of new users that are introduced to the Internet can allow cyber threats to flourish. In many cases, Computer Security Incident Response Teams (CSIRTs) can be used to provide CIIP. However, the development of traditional CSIRT-like structures can be problematic in developing regions where technological challenges, legal frameworks, and limited capacity can reduce its overall effectiveness. In this thesis we will introduce the Community-oriented Security, Advisory and Warning (C-SAW) Team. This model is designed to address the challenges to CIIP faced by developing regions by defining a structure that is loosely-coupled and flexible in nature. Furthermore, the aspect of community-orientation is used to allow a C-SAW Team to operate within a designated community of members. This thesis is divided into three primary parts. In Part 1 we will discuss the background research undertaken during this study. The background chapters will lay the foundation for the later chapters in this thesis. In Part 2 we will introduce the C-SAW Team model and elaborate on the construction, relationships, positioning, services, and framework in which it can be deployed. Finally, in Part 3 we present our conclusions to this thesis.
- Full Text:
- Authors: Ellefsen, Ian David
- Date: 2012-08-16
- Subjects: Computer crimes prevention , Computer security , Computer networks - Access control , Computer networks - Security measures
- Type: Thesis
- Identifier: uj:9498 , http://hdl.handle.net/10210/5928
- Description: D.Phil.(Computer Science) , In this thesis we will investigate the development of Critical Information Infrastructure Protection (CIIP) structures in the developing world. Developing regions are experiencing fast-paced development of information infrastructures, and improvements in related technologies such as Internet connectivity and wireless technologies. The use of these new technologies and the number of new users that are introduced to the Internet can allow cyber threats to flourish. In many cases, Computer Security Incident Response Teams (CSIRTs) can be used to provide CIIP. However, the development of traditional CSIRT-like structures can be problematic in developing regions where technological challenges, legal frameworks, and limited capacity can reduce its overall effectiveness. In this thesis we will introduce the Community-oriented Security, Advisory and Warning (C-SAW) Team. This model is designed to address the challenges to CIIP faced by developing regions by defining a structure that is loosely-coupled and flexible in nature. Furthermore, the aspect of community-orientation is used to allow a C-SAW Team to operate within a designated community of members. This thesis is divided into three primary parts. In Part 1 we will discuss the background research undertaken during this study. The background chapters will lay the foundation for the later chapters in this thesis. In Part 2 we will introduce the C-SAW Team model and elaborate on the construction, relationships, positioning, services, and framework in which it can be deployed. Finally, in Part 3 we present our conclusions to this thesis.
- Full Text:
- «
- ‹
- 1
- ›
- »