Abstract
Abstract : Optimization was carried out on the electric adjustment mechanism for transplanter by using the multidisciplinary design with weight, transmission efficiency, vibration frequency, and control error as the optimization goals. Then, a collaborative optimization model for the multidisciplinary design of a mechanism system was constructed. Based on ISIGHT software, the multidisciplinary design integration platform for the electric adjustment mechanism was built. A hybrid algorithm comprising the dual sequential quadratic programming method and the multi-island genetic algorithm was used to calculate the model. Optimization results show that the weight of the electric adjustment mechanism drops by 13.10%, its vibration frequency decreases by 27.71%, its transmission efficiency increases by 20.26%, and the control error decreases by 36.98%. Under the mutual coordination and balance of all discipline goals, the optimal values of the design variables of the electric adjustment mechanism indicate overall optimal performance.