Abstract
Residual stress is well-known to influence the mechanical properties of machined components.
The magnitude and distribution of these stresses are critical to determine the component’s life, specifically under fatigue loading. There exists a growing need to better understand the effects of cutting parameters on residual stress and to identify more innovative methods to evaluate residual stress. Titanium has been widely used, but many of the same qualities that enhance titanium’s appeal for most applications also contribute to it being one of the most difficult to machine materials. High-speed cutting experiments were conducted on commercially pure (CP) titanium and the residual stress depth profile was analysed using energy dispersive diffraction (EDDI). The residual stress depth profile of CP Grade 4 titanium was then evaluated. Experimental results show that cutting speed and depth of cut have a significant effect on the residual stress profile. At a low cutting speed, the surface residual stresses are largely compressive, becoming less compressive with an increase in cutting speed. An increase in depth of cut also introduces more compressive residual stresses into the material.